論文の概要: DenoMAE: A Multimodal Autoencoder for Denoising Modulation Signals
- arxiv url: http://arxiv.org/abs/2501.11538v1
- Date: Mon, 20 Jan 2025 15:23:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:28.779769
- Title: DenoMAE: A Multimodal Autoencoder for Denoising Modulation Signals
- Title(参考訳): DenoMAE:変調信号の復号化のためのマルチモーダルオートエンコーダ
- Authors: Atik Faysal, Taha Boushine, Mohammad Rostami, Reihaneh Gh. Roshan, Huaxia Wang, Nikhil Muralidhar, Avimanyu Sahoo, Yu-Dong Yao,
- Abstract要約: デノマエ(DenoMAE)は、プレトレーニング中に変調信号を復調するための新しいフレームワークである。
ノイズを含む複数の入力モダリティを組み込んで、クロスモーダル学習を強化する。
自動変調分類タスクにおける最先端の精度を実現する。
- 参考スコア(独自算出の注目度): 21.25974800554959
- License:
- Abstract: We propose Denoising Masked Autoencoder (Deno-MAE), a novel multimodal autoencoder framework for denoising modulation signals during pretraining. DenoMAE extends the concept of masked autoencoders by incorporating multiple input modalities, including noise as an explicit modality, to enhance cross-modal learning and improve denoising performance. The network is pre-trained using unlabeled noisy modulation signals and constellation diagrams, effectively learning to reconstruct their equivalent noiseless signals and diagrams. Deno-MAE achieves state-of-the-art accuracy in automatic modulation classification tasks with significantly fewer training samples, demonstrating a 10% reduction in unlabeled pretraining data and a 3% reduction in labeled fine-tuning data compared to existing approaches. Moreover, our model exhibits robust performance across varying signal-to-noise ratios (SNRs) and supports extrapolation on unseen lower SNRs. The results indicate that DenoMAE is an efficient, flexible, and data-efficient solution for denoising and classifying modulation signals in challenging noise-intensive environments.
- Abstract(参考訳): 本稿では,事前学習中に変調信号を復調するマルチモーダルオートエンコーダフレームワークDeno-MAEを提案する。
DenoMAEは、ノイズを含む複数の入力モダリティを明示的なモダリティとして組み込むことによって、マスク付きオートエンコーダの概念を拡張し、クロスモーダル学習を強化し、デノナイジング性能を向上させる。
ネットワークはラベルのないノイズ変調信号と星座図を用いて事前訓練され、等価なノイズのない信号と図を効果的に再構築することを学ぶ。
Deno-MAEは、トレーニングサンプルが大幅に少ない自動変調分類タスクにおける最先端の精度を実現し、ラベル付き事前学習データの10%削減とラベル付き微調整データの3%削減を既存手法と比較した。
さらに,本モデルでは,信号対雑音比(SNR)の変動に対して頑健な性能を示し,未知の低SNRに対する外挿をサポートする。
その結果,DenoMAEは雑音に強い環境下で変調信号の識別・分類を行う,効率的でフレキシブルでデータ効率のよいソリューションであることが示唆された。
関連論文リスト
- Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
分散音響センサ(DAS)技術は光ファイバーケーブルを利用して音響信号を検出する。
DASは、ジオフォンよりも低い信号対雑音比(S/N)を示す。
これにより、S/Nの低減は、反転と解釈を含むデータ解析に悪影響を及ぼす。
論文 参考訳(メタデータ) (2025-02-19T03:09:49Z) - Deep Active Speech Cancellation with Multi-Band Mamba Network [62.73250985838971]
アクティブ音声キャンセラ(ASC)のための新しい深層学習ネットワークを提案する。
提案したMulti-Band Mambaアーキテクチャは、入力音声を異なる周波数帯域にセグメントし、正確な反信号生成を可能にする。
実験の結果、ANCシナリオでは7.2dB、ASCでは6.2dBの改善が達成された。
論文 参考訳(メタデータ) (2025-02-03T09:22:26Z) - Efficient Noise Mitigation for Enhancing Inference Accuracy in DNNs on Mixed-Signal Accelerators [4.416800723562206]
我々は、アナログニューラルネットワークの精度に基づいて、プロセス誘起および老化に関連するアナログコンピューティングコンポーネントのバリエーションをモデル化する。
事前学習モデルの選択した層間に挿入された遮音ブロックを導入する。
雑音レベルに対するモデルのロバスト性を大幅に向上させることを実証した。
論文 参考訳(メタデータ) (2024-09-27T08:45:55Z) - Improved Noise Schedule for Diffusion Training [51.849746576387375]
本稿では,拡散モデルのトレーニングを強化するため,ノイズスケジュールを設計するための新しい手法を提案する。
我々は,標準のコサインスケジュールよりもノイズスケジュールの方が優れていることを実証的に示す。
論文 参考訳(メタデータ) (2024-07-03T17:34:55Z) - AMC-Net: An Effective Network for Automatic Modulation Classification [22.871024969842335]
本稿では,マルチスケールかつ効率的な特徴抽出を行いながら,周波数領域の入力信号をノイズ化することで認識を改善する新しいAMC-Netを提案する。
2つの代表的なデータセットの実験により、我々のモデルは、現在の方法よりも効率と効率が良いことを示した。
論文 参考訳(メタデータ) (2023-04-02T04:26:30Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
ノイズの多いマルチチャネル入力からクリーンなニューロン活動信号を生成することを学習する完全畳み込みデノイングオートエンコーダを提案する。
シミュレーションデータを用いた実験結果から,提案手法はノイズ崩壊型ニューラルネットワークの品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-09-18T14:51:24Z) - Diffusion-Based Representation Learning [65.55681678004038]
教師付き信号のない表現学習を実現するために,デノナイズスコアマッチングフレームワークを拡張した。
対照的に、拡散に基づく表現学習は、デノナイジングスコアマッチング目的の新しい定式化に依存している。
同じ手法を用いて,半教師付き画像分類における最先端モデルの改善を実現する無限次元潜在符号の学習を提案する。
論文 参考訳(メタデータ) (2021-05-29T09:26:02Z) - Variational Autoencoder for Speech Enhancement with a Noise-Aware
Encoder [30.318947721658862]
本稿では,ノイズ対応エンコーダを用いて,学習段階での雑音情報を含むことを提案する。
提案するノイズ認識vaeは,モデルパラメータ数を増加させることなく,全体的な歪みの観点から標準vaeを上回っている。
論文 参考訳(メタデータ) (2021-02-17T11:40:42Z) - Distribution Conditional Denoising: A Flexible Discriminative Image
Denoiser [0.0]
U-Netに基づくデゾナイズFCNにマルチタスク学習手法を適用するフレキシブルな識別画像デノイザを導入する。
この条件付き学習法は, 定音レベルU-Netデノイザを様々な雑音レベルに一般化することができる。
論文 参考訳(メタデータ) (2020-11-24T21:27:18Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
条件付き特徴変調(CFM)モジュールを備えたU-Netバックボーンを備えることにより,新しいフレキシブル画像符号化ネットワーク(CFMNet)を提案する。
CFMNetは、第1層のみのチャネルワイドシフトと比較して、複数のCFM層を配置することでノイズレベル情報をよりよく利用することができる。
我々のCFMNetは、フレキシブルな非盲検のためのノイズレベル情報を利用するのに有効であり、定量的メトリクスと視覚的品質の両方の観点から、既存の深部画像復調法に対して好適に機能する。
論文 参考訳(メタデータ) (2020-06-24T06:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。