論文の概要: PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
- arxiv url: http://arxiv.org/abs/2501.11551v1
- Date: Mon, 20 Jan 2025 15:39:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:11.137045
- Title: PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
- Title(参考訳): PIKE-RAG:sPecIalized KnowledgEとRationale Augmented Generation
- Authors: Jinyu Wang, Jingjing Fu, Lei Song, Jiang Bian,
- Abstract要約: sPecIalized KnowledgEとRationale Augmentation Generation(PIKE-RAG)を紹介する。
専門知識を抽出し,理解し,適用することに注力するとともに,LCMを正確な応答に向けて漸進的に操るコヒーレントな合理性を構築した。
この戦略的なアプローチは、産業アプリケーションの進化する要求を満たすために調整されたRAGシステムの段階的開発と強化のためのロードマップを提供する。
- 参考スコア(独自算出の注目度): 13.466961248035958
- License:
- Abstract: Despite notable advancements in Retrieval-Augmented Generation (RAG) systems that expand large language model (LLM) capabilities through external retrieval, these systems often struggle to meet the complex and diverse needs of real-world industrial applications. The reliance on retrieval alone proves insufficient for extracting deep, domain-specific knowledge performing in logical reasoning from specialized corpora. To address this, we introduce sPecIalized KnowledgE and Rationale Augmentation Generation (PIKE-RAG), focusing on extracting, understanding, and applying specialized knowledge, while constructing coherent rationale to incrementally steer LLMs toward accurate responses. Recognizing the diverse challenges of industrial tasks, we introduce a new paradigm that classifies tasks based on their complexity in knowledge extraction and application, allowing for a systematic evaluation of RAG systems' problem-solving capabilities. This strategic approach offers a roadmap for the phased development and enhancement of RAG systems, tailored to meet the evolving demands of industrial applications. Furthermore, we propose knowledge atomizing and knowledge-aware task decomposition to effectively extract multifaceted knowledge from the data chunks and iteratively construct the rationale based on original query and the accumulated knowledge, respectively, showcasing exceptional performance across various benchmarks.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) システムは、外部の検索を通じて大きな言語モデル(LLM)能力を拡張しているが、これらのシステムは現実世界の産業アプリケーションにおいて複雑で多様なニーズを満たすのにしばしば苦労している。
検索のみに依存することは、専門コーパスから論理的推論を行う深いドメイン固有の知識を抽出するのに不十分である。
これを解決するために, sPecIalized KnowledgE と Rationale Augmentation Generation (PIKE-RAG)を導入し, 専門知識の抽出, 理解, 適用に重点を置いた。
産業タスクの多様な課題を認識し,知識抽出と応用におけるタスクの複雑さに基づいてタスクを分類する新たなパラダイムを導入し,RAGシステムの問題解決能力の体系的評価を可能にした。
この戦略的なアプローチは、産業アプリケーションの進化する要求を満たすために調整されたRAGシステムの段階的開発と強化のためのロードマップを提供する。
さらに,データチャンクから多面的知識を効果的に抽出する知識の微粒化と知識認識タスク分解を提案し,各ベンチマークにおける異常な性能を示すために,それぞれ独自の問合せと蓄積した知識に基づいて論理を反復的に構築する。
関連論文リスト
- Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective [48.40768048080928]
Retrieval-Augmented Generation (RAG) システムは,Large Language Models (LLM) の性能向上を約束している。
本研究の目的は,RAGシステムにおける知識チェックに関する体系的研究を提供することである。
論文 参考訳(メタデータ) (2024-11-21T20:39:13Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - The Power of Noise: Redefining Retrieval for RAG Systems [19.387105120040157]
Retrieval-Augmented Generation (RAG) は、大規模言語モデルの事前学習知識を超えて拡張する方法として登場した。
我々は、RAGソリューションが取得すべきパスIRシステムの種類に焦点を当てる。
論文 参考訳(メタデータ) (2024-01-26T14:14:59Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
大きな言語モデル(LLM)には印象的な能力があるが、幻覚のような課題に直面している。
Retrieval-Augmented Generation (RAG) は,外部データベースからの知識を取り入れた,有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-18T07:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。