StAyaL | Multilingual Style Transfer
- URL: http://arxiv.org/abs/2501.11639v2
- Date: Wed, 22 Jan 2025 04:22:36 GMT
- Title: StAyaL | Multilingual Style Transfer
- Authors: Karishma Thakrar, Katrina Lawrence, Kyle Howard,
- Abstract summary: We show that by leveraging only 100 lines of text, an individuals unique style can be captured as a high-dimensional embedding.
This methodology breaks down the language barrier by transferring the style of a speaker between languages.
The proposed approach is shown to be topic-agnostic, with test accuracy and F1 scores of 74.9% and 0.75, respectively.
- Score: 0.0
- License:
- Abstract: Stylistic text generation plays a vital role in enhancing communication by reflecting the nuances of individual expression. This paper presents a novel approach for generating text in a specific speaker's style across different languages. We show that by leveraging only 100 lines of text, an individuals unique style can be captured as a high-dimensional embedding, which can be used for both text generation and stylistic translation. This methodology breaks down the language barrier by transferring the style of a speaker between languages. The paper is structured into three main phases: augmenting the speaker's data with stylistically consistent external sources, separating style from content using machine learning and deep learning techniques, and generating an abstract style profile by mean pooling the learned embeddings. The proposed approach is shown to be topic-agnostic, with test accuracy and F1 scores of 74.9% and 0.75, respectively. The results demonstrate the potential of the style profile for multilingual communication, paving the way for further applications in personalized content generation and cross-linguistic stylistic transfer.
Related papers
- Towards Visual Text Design Transfer Across Languages [49.78504488452978]
We introduce a novel task of Multimodal Style Translation (MuST-Bench)
MuST-Bench is a benchmark designed to evaluate the ability of visual text generation models to perform translation across different writing systems.
In response, we introduce SIGIL, a framework for multimodal style translation that eliminates the need for style descriptions.
arXiv Detail & Related papers (2024-10-24T15:15:01Z) - Learning to Generate Text in Arbitrary Writing Styles [6.7308816341849695]
It is desirable for language models to produce text in an author-specific style on the basis of a potentially small writing sample.
We propose to guide a language model to generate text in a target style using contrastively-trained representations that capture stylometric features.
arXiv Detail & Related papers (2023-12-28T18:58:52Z) - ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style
Transfer [57.6482608202409]
Textual style transfer is the task of transforming stylistic properties of text while preserving meaning.
We introduce a novel diffusion-based framework for general-purpose style transfer that can be flexibly adapted to arbitrary target styles.
We validate the method on the Enron Email Corpus, with both human and automatic evaluations, and find that it outperforms strong baselines on formality, sentiment, and even authorship style transfer.
arXiv Detail & Related papers (2023-08-29T17:36:02Z) - Stylized Data-to-Text Generation: A Case Study in the E-Commerce Domain [53.22419717434372]
We propose a new task, namely stylized data-to-text generation, whose aim is to generate coherent text according to a specific style.
This task is non-trivial, due to three challenges: the logic of the generated text, unstructured style reference, and biased training samples.
We propose a novel stylized data-to-text generation model, named StyleD2T, comprising three components: logic planning-enhanced data embedding, mask-based style embedding, and unbiased stylized text generation.
arXiv Detail & Related papers (2023-05-05T03:02:41Z) - StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized
Tokenizer of a Large-Scale Generative Model [64.26721402514957]
We propose StylerDALLE, a style transfer method that uses natural language to describe abstract art styles.
Specifically, we formulate the language-guided style transfer task as a non-autoregressive token sequence translation.
To incorporate style information, we propose a Reinforcement Learning strategy with CLIP-based language supervision.
arXiv Detail & Related papers (2023-03-16T12:44:44Z) - Audience-Centric Natural Language Generation via Style Infusion [5.6732899077715375]
We propose the novel task of style infusion - infusing the stylistic preferences of audiences in pretrained language generation models.
We leverage limited pairwise human judgments to bootstrap a style analysis model and augment our seed set of judgments.
Our infusion approach can generate compelling stylized examples with generic text prompts.
arXiv Detail & Related papers (2023-01-24T19:57:50Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
Long texts usually involve more complicated author linguistic preferences such as discourse structures than sentences.
We formulate the task of non-parallel story author-style transfer, which requires transferring an input story into a specified author style.
We use an additional training objective to disentangle stylistic features from the learned discourse representation to prevent the model from degenerating to an auto-encoder.
arXiv Detail & Related papers (2022-08-29T08:47:49Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
discrete nature of natural language makes disentangling of textual representations more challenging.
Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text.
Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation.
arXiv Detail & Related papers (2020-06-01T03:36:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.