Mitigating Stylistic Biases of Machine Translation Systems via Monolingual Corpora Only
- URL: http://arxiv.org/abs/2507.13395v1
- Date: Wed, 16 Jul 2025 09:45:11 GMT
- Title: Mitigating Stylistic Biases of Machine Translation Systems via Monolingual Corpora Only
- Authors: Xuanqi Gao, Weipeng Jiang, Juan Zhai, Shiqing Ma, Siyi Xie, Xinyang Yin, Chao Shen,
- Abstract summary: We introduce Babel, a novel framework that enhances stylistic fidelity in neural machine translation (NMT)<n>Babel employs two key components: (1) a style detector based on contextual embeddings that identifies stylistic disparities between source and target texts, and (2) a diffusion-based style applicator that rectifies stylistic inconsistencies while maintaining semantic integrity.<n>Our framework integrates with existing NMT systems as a post-processing module, enabling style-aware translation without requiring architectural modifications or parallel stylistic data.
- Score: 24.663850463100346
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advent of neural machine translation (NMT) has revolutionized cross-lingual communication, yet preserving stylistic nuances remains a significant challenge. While existing approaches often require parallel corpora for style preservation, we introduce Babel, a novel framework that enhances stylistic fidelity in NMT using only monolingual corpora. Babel employs two key components: (1) a style detector based on contextual embeddings that identifies stylistic disparities between source and target texts, and (2) a diffusion-based style applicator that rectifies stylistic inconsistencies while maintaining semantic integrity. Our framework integrates with existing NMT systems as a post-processing module, enabling style-aware translation without requiring architectural modifications or parallel stylistic data. Extensive experiments on five diverse domains (law, literature, scientific writing, medicine, and educational content) demonstrate Babel's effectiveness: it identifies stylistic inconsistencies with 88.21% precision and improves stylistic preservation by 150% while maintaining a high semantic similarity score of 0.92. Human evaluation confirms that translations refined by Babel better preserve source text style while maintaining fluency and adequacy.
Related papers
- Pun Intended: Multi-Agent Translation of Wordplay with Contrastive Learning and Phonetic-Semantic Embeddings [0.0]
This research proposes a novel approach for translating puns from English to French by combining state-of-the-art large language models with specialized techniques for wordplay generation.<n>Our methodology's primary objective is to capture the linguistic creativity and humor of the source text wordplay, rather than simply duplicating its vocabulary.
arXiv Detail & Related papers (2025-07-09T03:09:14Z) - StAyaL | Multilingual Style Transfer [0.0]
We show that by leveraging only 100 lines of text, an individuals unique style can be captured as a high-dimensional embedding.<n>This methodology breaks down the language barrier by transferring the style of a speaker between languages.<n>The proposed approach is shown to be topic-agnostic, with test accuracy and F1 scores of 74.9% and 0.75, respectively.
arXiv Detail & Related papers (2025-01-20T18:13:18Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
Long texts usually involve more complicated author linguistic preferences such as discourse structures than sentences.
We formulate the task of non-parallel story author-style transfer, which requires transferring an input story into a specified author style.
We use an additional training objective to disentangle stylistic features from the learned discourse representation to prevent the model from degenerating to an auto-encoder.
arXiv Detail & Related papers (2022-08-29T08:47:49Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
We create datasets and models aimed at narrowing the performance gap between low and high-resource languages.
We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks.
Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art.
arXiv Detail & Related papers (2022-07-11T07:33:36Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
We present a continual pre-training framework on mBART to effectively adapt it to unseen languages.
Results show that our method can consistently improve the fine-tuning performance upon the mBART baseline.
Our approach also boosts the performance on translation pairs where both languages are seen in the original mBART's pre-training.
arXiv Detail & Related papers (2021-05-09T14:49:07Z) - GTAE: Graph-Transformer based Auto-Encoders for Linguistic-Constrained
Text Style Transfer [119.70961704127157]
Non-parallel text style transfer has attracted increasing research interests in recent years.
Current approaches still lack the ability to preserve the content and even logic of original sentences.
We propose a method called Graph Transformer based Auto-GTAE, which models a sentence as a linguistic graph and performs feature extraction and style transfer at the graph level.
arXiv Detail & Related papers (2021-02-01T11:08:45Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
We plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages.
It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language.
The proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark.
arXiv Detail & Related papers (2020-10-30T03:41:38Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z) - A Common Semantic Space for Monolingual and Cross-Lingual
Meta-Embeddings [10.871587311621974]
This paper presents a new technique for creating monolingual and cross-lingual meta-embeddings.
Existing word vectors are projected to a common semantic space using linear transformations and averaging.
The resulting cross-lingual meta-embeddings also exhibit excellent cross-lingual transfer learning capabilities.
arXiv Detail & Related papers (2020-01-17T15:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.