Blockchain Security Risk Assessment in Quantum Era, Migration Strategies and Proactive Defense
- URL: http://arxiv.org/abs/2501.11798v1
- Date: Tue, 21 Jan 2025 00:27:41 GMT
- Title: Blockchain Security Risk Assessment in Quantum Era, Migration Strategies and Proactive Defense
- Authors: Yaser Baseri, Abdelhakim Hafid, Yahya Shahsavari, Dimitrios Makrakis, Hassan Khodaiemehr,
- Abstract summary: The emergence of quantum computing presents a formidable challenge to the security of blockchain systems.
Traditional cryptographic algorithms become vulnerable to the immense computational power of quantum computers.
This paper conducts a thorough risk assessment of transitioning to quantum-resistant blockchains.
- Score: 2.758914621931148
- License:
- Abstract: The emergence of quantum computing presents a formidable challenge to the security of blockchain systems. Traditional cryptographic algorithms, foundational to digital signatures, message encryption, and hashing functions, become vulnerable to the immense computational power of quantum computers. This paper conducts a thorough risk assessment of transitioning to quantum-resistant blockchains, comprehensively analyzing potential threats targeting vital blockchain components: the network, mining pools, transaction verification mechanisms, smart contracts, and user wallets. By elucidating the intricate challenges and strategic considerations inherent in transitioning to quantum-resistant algorithms, the paper evaluates risks and highlights obstacles in securing blockchain components with quantum-resistant cryptography. It offers a hybrid migration strategy to facilitate a smooth transition from classical to quantum-resistant cryptography. The analysis extends to prominent blockchains such as Bitcoin, Ethereum, Ripple, Litecoin, and Zcash, assessing vulnerable components, potential impacts, and associated STRIDE threats, thereby identifying areas susceptible to quantum attacks. Beyond analysis, the paper provides actionable guidance for designing secure and resilient blockchain ecosystems in the quantum computing era. Recognizing the looming threat of quantum computers, this research advocates for a proactive transition to quantum-resistant blockchain networks. It proposes a tailored security blueprint that strategically fortifies each component against the evolving landscape of quantum-induced cyber threats. Emphasizing the critical need for blockchain stakeholders to adopt proactive measures and implement quantum-resistant solutions, the paper underscores the importance of embracing these insights to navigate the complexities of the quantum era with resilience and confidence.
Related papers
- A Survey and Comparison of Post-quantum and Quantum Blockchains [4.965489431705061]
The rapid progress of quantum computing poses a significant threat to the security of existing blockchain technologies.
The emergence of Shor's and Grover's algorithms raises concerns regarding the compromise of the cryptographic systems underlying blockchains.
It is essential to develop methods that reinforce blockchain technology against quantum attacks.
arXiv Detail & Related papers (2024-09-02T16:20:22Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure [0.04096453902709291]
This analysis explores the impact of quantum computing on critical infrastructure and cloud services.
We advocate for proactive security strategies and collaboration between sectors to develop and implement quantum-resistant cryptography.
This blueprint strengthens each area's defenses against potential quantum-induced cyber threats.
arXiv Detail & Related papers (2024-04-16T15:36:23Z) - Towards post-quantum blockchain: A review on blockchain cryptography
resistant to quantum computing attacks [0.0]
This article studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs.
It provides comparisons on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains.
arXiv Detail & Related papers (2024-02-01T17:29:07Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - From Portfolio Optimization to Quantum Blockchain and Security: A
Systematic Review of Quantum Computing in Finance [0.0]
We provide an overview of the recent work in the quantum finance realm from various perspectives.
The applications in consideration are Portfolio Optimization, Fraud Detection, and Monte Carlo methods for derivative pricing and risk calculation.
We give a comprehensive overview of the applications of quantum computing in the field of blockchain technology.
arXiv Detail & Related papers (2023-06-12T19:53:23Z) - When Quantum Information Technologies Meet Blockchain in Web 3.0 [86.91054991998273]
We introduce a quantum blockchain-driven Web 3.0 framework that provides information-theoretic security for decentralized data transferring and payment transactions.
We discuss the potential applications and challenges of implementing quantum blockchain in Web 3.0.
arXiv Detail & Related papers (2022-11-29T05:38:42Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Quantum crypto-economics: Blockchain prediction markets for the
evolution of quantum technology [0.623435010579444]
In due course, quantum technology will have the ability to directly compromise the cryptographic foundations of blockchain.
We build financial models for quantum failure in various scenarios, including pricing quantum risk premiums.
arXiv Detail & Related papers (2021-02-01T06:19:45Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.