Cyber Threats in Financial Transactions -- Addressing the Dual Challenge of AI and Quantum Computing
- URL: http://arxiv.org/abs/2503.15678v1
- Date: Wed, 19 Mar 2025 20:16:27 GMT
- Title: Cyber Threats in Financial Transactions -- Addressing the Dual Challenge of AI and Quantum Computing
- Authors: Ahmed M. Elmisery, Mirela Sertovic, Andrew Zayin, Paul Watson,
- Abstract summary: Financial sector faces escalating cyber threats amplified by artificial intelligence (AI) and the advent of quantum computing.<n>Report analyzes these threats, relevant frameworks, and possible countermeasures like quantum cryptography.<n>Financial industry must adopt a proactive and adaptive approach to cybersecurity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The financial sector faces escalating cyber threats amplified by artificial intelligence (AI) and the advent of quantum computing. AI is being weaponized for sophisticated attacks like deepfakes and AI-driven malware, while quantum computing threatens to render current encryption methods obsolete. This report analyzes these threats, relevant frameworks, and possible countermeasures like quantum cryptography. AI enhances social engineering and phishing attacks via personalized content, lowers entry barriers for cybercriminals, and introduces risks like data poisoning and adversarial AI. Quantum computing, particularly Shor's algorithm, poses a fundamental threat to current encryption standards (RSA and ECC), with estimates suggesting cryptographically relevant quantum computers could emerge within the next 5-30 years. The "harvest now, decrypt later" scenario highlights the urgency of transitioning to quantum-resistant cryptography. This is key. Existing legal frameworks are evolving to address AI in cybercrime, but quantum threats require new initiatives. International cooperation and harmonized regulations are crucial. Quantum Key Distribution (QKD) offers theoretical security but faces practical limitations. Post-quantum cryptography (PQC) is a promising alternative, with ongoing standardization efforts. Recommendations for international regulators include fostering collaboration and information sharing, establishing global standards, supporting research and development in quantum security, harmonizing legal frameworks, promoting cryptographic agility, and raising awareness and education. The financial industry must adopt a proactive and adaptive approach to cybersecurity, investing in research, developing migration plans for quantum-resistant cryptography, and embracing a multi-faceted, collaborative strategy to build a resilient, quantum-safe, and AI-resilient financial ecosystem
Related papers
- Evaluating the Potential of Quantum Machine Learning in Cybersecurity: A Case-Study on PCA-based Intrusion Detection Systems [42.184783937646806]
We investigate the potential impact of quantum computing and machine learning (QML) on cybersecurity applications of traditional ML.<n>First, we explore the potential advantages of quantum computing in machine learning problems specifically related to cybersecurity.<n>Then, we describe a methodology to quantify the future impact of fault-tolerant QML algorithms on real-world problems.
arXiv Detail & Related papers (2025-02-16T15:49:25Z) - Application of $α$-order Information Metrics for Secure Communication in Quantum Physical Layer Design [45.41082277680607]
We study the $alpha$-order information-theoretic metrics based on R'enyi entropy.
We apply our framework to a practical scenario involving BPSK modulation over a lossy bosonic channel.
arXiv Detail & Related papers (2025-02-07T03:44:11Z) - Blockchain Security Risk Assessment in Quantum Era, Migration Strategies and Proactive Defense [2.758914621931148]
The emergence of quantum computing presents a formidable challenge to the security of blockchain systems.<n>Traditional cryptographic algorithms become vulnerable to the immense computational power of quantum computers.<n>This paper conducts a thorough risk assessment of transitioning to quantum-resistant blockchains.
arXiv Detail & Related papers (2025-01-21T00:27:41Z) - Strategic Roadmap for Quantum- Resistant Security: A Framework for Preparing Industries for the Quantum Threat [0.0]
This paper outlines a strategic roadmap for industries to anticipate and mitigate the risks posed by quantum attacks.
By presenting a structured timeline and actionable recommendations, this roadmap with proposed framework prepares industries with the essential strategy to safeguard their potential security threats in the quantum computing era.
arXiv Detail & Related papers (2024-11-15T06:59:41Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - A Security Assessment tool for Quantum Threat Analysis [34.94301200620856]
The rapid advancement of quantum computing poses a significant threat to many current security algorithms used for secure communication, digital authentication, and information encryption.
A sufficiently powerful quantum computer could potentially exploit vulnerabilities in these algorithms, rendering data in insecure transit.
This work developed a quantum assessment tool for organizations, providing tailored recommendations for transitioning their security protocols into a post-quantum world.
arXiv Detail & Related papers (2024-07-18T13:58:34Z) - Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era [0.0]
Post-quantum cryptography (PQC) is a critical field aimed at developing resilient cryptographic algorithms to quantum attacks.
This paper delineates the vulnerabilities of classical cryptographic systems to quantum attacks, elucidates impervious principles of quantum computing, and introduces various PQC algorithms.
arXiv Detail & Related papers (2024-03-18T12:51:56Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.<n>We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Demonstration of quantum-digital payments [36.136619420474766]
We show how quantum light can secure daily digital payments by generating inherently unforgeable quantum cryptograms.
Unlike previously proposed protocols, our solution does not depend on long-term quantum storage or trusted agents and authenticated channels.
It is practical with near-term technology and may herald an era of quantum-enabled security.
arXiv Detail & Related papers (2023-05-23T20:20:14Z) - When Quantum Information Technologies Meet Blockchain in Web 3.0 [86.91054991998273]
We introduce a quantum blockchain-driven Web 3.0 framework that provides information-theoretic security for decentralized data transferring and payment transactions.
We discuss the potential applications and challenges of implementing quantum blockchain in Web 3.0.
arXiv Detail & Related papers (2022-11-29T05:38:42Z) - Cybersecurity for Quantum Computing [3.867124349164785]
Quantum computing companies, institutions and research groups may become targets of nation-state actors, cybercriminals and hacktivists.
This paper discusses the status quo of quantum computing technologies and the quantum threat associated with it.
We propose recommendations on how to proactively reduce the cyberattack surface through threat intelligence and by ensuring security by design of quantum software and hardware components.
arXiv Detail & Related papers (2021-10-27T18:41:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.