論文の概要: Utilising Deep Learning to Elicit Expert Uncertainty
- arxiv url: http://arxiv.org/abs/2501.11813v1
- Date: Tue, 21 Jan 2025 01:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:13.755343
- Title: Utilising Deep Learning to Elicit Expert Uncertainty
- Title(参考訳): エキスパートの不確実性を取り除くためのディープラーニングの利用
- Authors: Julia R. Falconer, Eibe Frank, Devon L. L. Polaschek, Chaitanya Joshi,
- Abstract要約: 筆者らは, [14 ] で提案した手法を, 専門家が実際に使用する手法に応用するために, ディープラーニングアプローチを採用する方法を示す。
本稿では、専門家の意思決定を効果的にモデル化し、専門家の不確実性を捉えた分布を抽出する深層学習モデルの概要について述べる。
- 参考スコア(独自算出の注目度): 2.9686400658670578
- License:
- Abstract: Recent work [ 14 ] has introduced a method for prior elicitation that utilizes records of expert decisions to infer a prior distribution. While this method provides a promising approach to eliciting expert uncertainty, it has only been demonstrated using tabular data, which may not entirely represent the information used by experts to make decisions. In this paper, we demonstrate how analysts can adopt a deep learning approach to utilize the method proposed in [14 ] with the actual information experts use. We provide an overview of deep learning models that can effectively model expert decision-making to elicit distributions that capture expert uncertainty and present an example examining the risk of colon cancer to show in detail how these models can be used.
- Abstract(参考訳): 近年の[14]では,専門家による意思決定の記録を用いて,事前分布を推定する手法を導入している。
この手法は専門家の不確実性を引き出すための有望なアプローチを提供するが、専門家が意思決定に使用する情報を完全に表現するものではないかもしれない表形式のデータを用いてのみ実証されている。
本稿では, [14 ] で提案した手法を実際の情報専門家が利用する手法に応用するために, 分析者がどのようにしてディープラーニングアプローチを適用できるかを実証する。
本稿では,専門家の意思決定を効果的にモデル化し,専門家の不確実性を捉えた分布を抽出する深層学習モデルの概要と,大腸癌のリスクを検証し,これらのモデルがどのように使用できるのかを詳細に示す例を示す。
関連論文リスト
- On the Biased Assessment of Expert Finding Systems [11.083396379885478]
大きな組織では、特定のトピックについて専門家を特定することが、チームや部門にまたがる内部知識を活用する上で非常に重要です。
このケーススタディでは、これらのレコメンデーションが専門家発見システムの評価に与える影響について分析する。
本稿では,システム検証アノテーションが従来の用語ベース検索モデルの性能過大評価につながることを示す。
また,同義語を用いた知識領域を拡大し,その構成語に対するリテラル言及に対する強い偏見を明らかにする。
論文 参考訳(メタデータ) (2024-10-07T13:19:08Z) - Offline Imitation Learning with Model-based Reverse Augmentation [48.64791438847236]
本稿では,自己ペースの逆拡張によるオフラインImitation Learningという,新しいモデルベースフレームワークを提案する。
具体的には、オフラインのデモからリバース・ダイナミック・モデルを構築し、専門家が観察した状態につながる軌道を効率的に生成する。
後続の強化学習法を用いて,拡張軌道から学習し,未観測状態から未観測状態へ移行する。
論文 参考訳(メタデータ) (2024-06-18T12:27:02Z) - A Guide to Feature Importance Methods for Scientific Inference [10.31256905045161]
特徴重要度(FI)法はデータ生成過程(DGP)に有用な洞察を与える
本稿では,グローバルFI手法の解釈の理解を支援するための包括的ガイドとして機能する。
論文 参考訳(メタデータ) (2024-04-19T13:01:59Z) - Sequential Decision Making with Expert Demonstrations under Unobserved Heterogeneity [22.0059059325909]
本研究では,未観測の文脈情報に基づいて意思決定を行った専門家による補助的な実演を行い,オンライン上での逐次意思決定の課題について検討する。
この設定は、自動運転車、ヘルスケア、金融など、多くのアプリケーション領域で発生します。
本稿では,学習者の意思決定問題に対する情報的事前分布を確立するために,Expers-as-Priorsアルゴリズム(ExPerior)を提案する。
論文 参考訳(メタデータ) (2024-04-10T18:00:17Z) - Causal Imitation Learning with Unobserved Confounders [82.22545916247269]
本研究では,学習者と専門家の感覚入力が異なる場合の模倣学習について検討する。
我々は、専門家の軌跡の量的知識を活用することで、模倣が依然として実現可能であることを示した。
論文 参考訳(メタデータ) (2022-08-12T13:29:53Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
本稿では,知識に基づくVQAに向けて,エンド・ツー・エンドのレトリバー・リーダー・フレームワークを提案する。
我々は、視覚言語による事前学習モデルからの多モーダルな暗黙の知識に光を当て、知識推論の可能性を掘り下げた。
提案手法では,知識検索のガイダンスを提供するだけでなく,質問応答に対してエラーが発生しやすいケースも排除できる。
論文 参考訳(メタデータ) (2022-06-30T02:35:04Z) - Online Learning with Uncertain Feedback Graphs [12.805267089186533]
専門家間の関係をフィードバックグラフで把握し、学習者の意思決定を支援する。
実際には、名目上のフィードバックグラフはしばしば不確実性を伴うため、専門家間の実際の関係を明らかにすることは不可能である。
本研究は、潜在的な不確実性の諸事例を考察し、それらを扱うための新しいオンライン学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-15T21:21:30Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Consistent Estimators for Learning to Defer to an Expert [5.076419064097734]
我々は、意思決定を下流の専門家に延期するか、予測するか選択できる予測器の学習方法を示す。
様々な実験課題に対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-06-02T18:21:38Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
我々は,LFME(Learning From Multiple Experts)と呼ばれる自己評価型知識蒸留フレームワークを提案する。
提案するLFMEフレームワークは,複数の'Experts'からの知識を集約して,統一された学生モデルを学ぶ。
提案手法は,最先端の手法に比べて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-01-06T12:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。