PXGen: A Post-hoc Explainable Method for Generative Models
- URL: http://arxiv.org/abs/2501.11827v1
- Date: Tue, 21 Jan 2025 02:10:50 GMT
- Title: PXGen: A Post-hoc Explainable Method for Generative Models
- Authors: Yen-Lung Huang, Ming-Hsi Weng, Hao-Tsung Yang,
- Abstract summary: generative AI (XAI) plays a crucial role in ensuring the responsible development and deployment of generative AI technologies.
Recent research emphasizes that a proficient XAI method should adhere to a set of criteria, primarily focusing on two key areas.
We propose PXGen, a post-hoc explainable method for generative models.
- Score: 0.5266869303483376
- License:
- Abstract: With the rapid growth of generative AI in numerous applications, explainable AI (XAI) plays a crucial role in ensuring the responsible development and deployment of generative AI technologies. XAI has undergone notable advancements and widespread adoption in recent years, reflecting a concerted push to enhance the transparency, interpretability, and credibility of AI systems. Recent research emphasizes that a proficient XAI method should adhere to a set of criteria, primarily focusing on two key areas. Firstly, it should ensure the quality and fluidity of explanations, encompassing aspects like faithfulness, plausibility, completeness, and tailoring to individual needs. Secondly, the design principle of the XAI system or mechanism should cover the following factors such as reliability, resilience, the verifiability of its outputs, and the transparency of its algorithm. However, research in XAI for generative models remains relatively scarce, with little exploration into how such methods can effectively meet these criteria in that domain. In this work, we propose PXGen, a post-hoc explainable method for generative models. Given a model that needs to be explained, PXGen prepares two materials for the explanation, the Anchor set and intrinsic & extrinsic criteria. Those materials are customizable by users according to their purpose and requirements. Via the calculation of each criterion, each anchor has a set of feature values and PXGen provides examplebased explanation methods according to the feature values among all the anchors and illustrated and visualized to the users via tractable algorithms such as k-dispersion or k-center.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
"Black box" characteristic of AI models constrains interpretability, transparency, and reliability.
This study presents a unified XAI evaluation framework to evaluate correctness, interpretability, robustness, fairness, and completeness of explanations generated by AI models.
arXiv Detail & Related papers (2024-12-05T05:30:10Z) - Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - XEdgeAI: A Human-centered Industrial Inspection Framework with Data-centric Explainable Edge AI Approach [2.0209172586699173]
This paper introduces a novel XAI-integrated Visual Quality Inspection framework.
Our framework incorporates XAI and the Large Vision Language Model to deliver human-centered interpretability.
This approach paves the way for the broader adoption of reliable and interpretable AI tools in critical industrial applications.
arXiv Detail & Related papers (2024-07-16T14:30:24Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
Support of artificial intelligence based decision-making is a key element in future 6G networks.
In such applications, using AI as black-box models is risky and challenging.
We propose a novel-based XAI-CHEST framework that is oriented toward channel estimation in wireless communications.
arXiv Detail & Related papers (2024-07-09T16:24:21Z) - Evolutionary Computation and Explainable AI: A Roadmap to Understandable Intelligent Systems [37.02462866600066]
Evolutionary computation (EC) offers significant potential to contribute to explainable AI (XAI)
This paper provides an introduction to XAI and reviews current techniques for explaining machine learning models.
We then explore how EC can be leveraged in XAI and examine existing XAI approaches that incorporate EC techniques.
arXiv Detail & Related papers (2024-06-12T02:06:24Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
We propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX.
REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance.
arXiv Detail & Related papers (2023-07-18T04:26:33Z) - Optimizing Explanations by Network Canonization and Hyperparameter
Search [74.76732413972005]
Rule-based and modified backpropagation XAI approaches often face challenges when being applied to modern model architectures.
Model canonization is the process of re-structuring the model to disregard problematic components without changing the underlying function.
In this work, we propose canonizations for currently relevant model blocks applicable to popular deep neural network architectures.
arXiv Detail & Related papers (2022-11-30T17:17:55Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - A multi-component framework for the analysis and design of explainable
artificial intelligence [0.0]
The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments.
The emergence of concern for creating trusted AI systems, including the creation of regulatory principles to ensure transparency and trust of AI systems.
Here we intend to provide a strategic inventory of XAI requirements, demonstrate their connection to a history of XAI ideas, and synthesize those ideas into a simple framework to calibrate five successive levels of XAI.
arXiv Detail & Related papers (2020-05-05T01:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.