論文の概要: ShadowGenes: Leveraging Recurring Patterns within Computational Graphs for Model Genealogy
- arxiv url: http://arxiv.org/abs/2501.11830v1
- Date: Tue, 21 Jan 2025 02:15:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:02.721387
- Title: ShadowGenes: Leveraging Recurring Patterns within Computational Graphs for Model Genealogy
- Title(参考訳): ShadowGenes: モデル生成のための計算グラフ内の再帰パターンを活用する
- Authors: Kasimir Schulz, Kieran Evans,
- Abstract要約: そこで我々はShadowGenesを紹介した。これは、与えられたモデルのアーキテクチャ、タイプ、およびファミリーを識別するための、新しいシグネチャベースのメソッドである。
我々は1,400モデル以上のラベル付きデータセットでShadowGenesをテストし、平均正の97.49%、精度の99.51%を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning model genealogy enables practitioners to determine which architectural family a neural network belongs to. In this paper, we introduce ShadowGenes, a novel, signature-based method for identifying a given model's architecture, type, and family. Our method involves building a computational graph of the model that is agnostic of its serialization format, then analyzing its internal operations to identify unique patterns, and finally building and refining signatures based on these. We highlight important workings of the underlying engine and demonstrate the technique used to construct a signature and scan a given model. This approach to model genealogy can be applied to model files without the need for additional external information. We test ShadowGenes on a labeled dataset of over 1,400 models and achieve a mean true positive rate of 97.49% and a precision score of 99.51%; which validates the technique as a practical method for model genealogy. This enables practitioners to understand the use cases of a given model, the internal computational process, and identify possible security risks, such as the potential for model backdooring.
- Abstract(参考訳): 機械学習モデル系譜は、実践者がニューラルネットワークのどのアーキテクチャファミリーに属しているかを決定することを可能にする。
本稿では,特定のモデルのアーキテクチャ,タイプ,家族を識別する新規な署名ベース手法であるShadowGenesを紹介する。
本手法では,直列化形式に依存しないモデルの計算グラフを構築し,その内部操作を分析してユニークなパターンを同定し,最後にそれらに基づいてシグネチャを構築し,精算する。
我々は、基礎となるエンジンの重要な作業を強調し、シグネチャを構築し、与えられたモデルをスキャンするために使用されるテクニックを実証する。
モデル系譜へのこのアプローチは、追加の外部情報を必要としないモデルファイルに適用することができる。
我々は1400以上のモデルからなるラベル付きデータセット上でShadowGenesをテストし、97.49%の平均正の正の値と99.51%の精度のスコアを得た。
これにより、あるモデルのユースケースや内部計算プロセスを理解し、モデルのバックドア化の可能性など、潜在的なセキュリティリスクを特定することが可能になる。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Neural Lineage [56.34149480207817]
本稿では,親子間の系統関係の発見を目的としたニューラルライン検出という新しいタスクを提案する。
実用上,ニューラルネットワーク表現類似度指標に微調整プロセスの近似を組み込んだ学習自由アプローチを導入する。
精度を追求するために,エンコーダと変圧器検出器からなる学習系系統検出装置を導入する。
論文 参考訳(メタデータ) (2024-06-17T01:11:53Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - Likelihood Based Inference in Fully and Partially Observed Exponential Family Graphical Models with Intractable Normalizing Constants [4.532043501030714]
マルコフ確率場を符号化する確率的グラフィカルモデルは、生成的モデリングの基本的な構成要素である。
本稿では,これらのモデルの全確率に基づく解析が,計算効率のよい方法で実現可能であることを示す。
論文 参考訳(メタデータ) (2024-04-27T02:58:22Z) - Model Provenance via Model DNA [23.885185988451667]
本稿では,機械学習モデルの特徴を表現した新しいモデルDNAについて紹介する。
本研究では,対象モデルの事前学習モデルであるかどうかを識別できるモデル証明同定のための効率的なフレームワークを開発する。
論文 参考訳(メタデータ) (2023-08-04T03:46:41Z) - GrOVe: Ownership Verification of Graph Neural Networks using Embeddings [13.28269672097063]
グラフニューラルネットワーク(GNN)は、大規模グラフ構造化データから推論をモデル化および描画するための最先端のアプローチとして登場した。
以前の研究によると、GNNは抽出攻撃をモデル化する傾向がある。
GrOVeは最先端のGNNモデルフィンガープリント方式である。
論文 参考訳(メタデータ) (2023-04-17T19:06:56Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
放射状基底関数(RBF)ユニットによって形成された複数の分岐で拡張されたCNNベースのアーキテクチャを提案する。
RBFユニットは、中間表現を用いて類似のインスタンスで共有される局所パターンをキャプチャする。
提案手法は,提案手法の競争力を高めるためのローカル情報の導入であることを示す。
論文 参考訳(メタデータ) (2021-09-07T21:05:56Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
雑音アノテータから基底真理ラベルを学習するための完全ベイズ的枠組みを提案する。
我々のフレームワークは、ラベル分布上の生成的ベイズソフトクラスタリングモデルを古典的なDavidとSkeneのジョイントアノテータデータモデルに分解することでスケーラビリティを保証する。
論文 参考訳(メタデータ) (2021-06-20T02:15:20Z) - An application of a pseudo-parabolic modeling to texture image
recognition [0.0]
偏微分方程式モデルを用いたテクスチャ画像認識のための新しい手法を提案する。
擬似パラボリックなBuckley-Leverett方程式を用いて、デジタル画像表現のダイナミクスを提供し、時間とともに進化するそれらの画像から局所的な記述子を収集する。
論文 参考訳(メタデータ) (2021-02-09T18:08:42Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Local Model Feature Transformations [0.0]
局所学習法は機械学習アルゴリズムの一般的なクラスである。
局所学習モデルの研究は、主に単純なモデルファミリーに限られている。
局所モデリングパラダイムをガウス過程、二次モデル、単語埋め込みモデルに拡張する。
論文 参考訳(メタデータ) (2020-04-13T18:41:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。