論文の概要: Data-driven Detection and Evaluation of Damages in Concrete Structures: Using Deep Learning and Computer Vision
- arxiv url: http://arxiv.org/abs/2501.11836v1
- Date: Tue, 21 Jan 2025 02:44:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:26:16.529913
- Title: Data-driven Detection and Evaluation of Damages in Concrete Structures: Using Deep Learning and Computer Vision
- Title(参考訳): 深層学習とコンピュータビジョンを用いたコンクリート構造物の損傷検出と評価
- Authors: Saeid Ataei, Saeed Adibnazari, Seyyed Taghi Ataei,
- Abstract要約: 本研究では、ディープラーニングによる損傷の自動検出と解析のための高度なデータ駆動手法について検討する。
最新のインスタンスセグメンテーションモデルであるYOLO-v7インスタンスセグメンテーションとMask R-CNNを評価した。
YOLO-v7は96.1%のmAP@0.5を達成し、40 FPSを処理し、Mask R-CNNを上回り、mAP@0.5を92.1%、処理速度を18 FPSとした。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Structural integrity is vital for maintaining the safety and longevity of concrete infrastructures such as bridges, tunnels, and walls. Traditional methods for detecting damages like cracks and spalls are labor-intensive, time-consuming, and prone to human error. To address these challenges, this study explores advanced data-driven techniques using deep learning for automated damage detection and analysis. Two state-of-the-art instance segmentation models, YOLO-v7 instance segmentation and Mask R-CNN, were evaluated using a dataset comprising 400 images, augmented to 10,995 images through geometric and color-based transformations to enhance robustness. The models were trained and validated using a dataset split into 90% training set, validation and test set 10%. Performance metrics such as precision, recall, mean average precision (mAP@0.5), and frames per second (FPS) were used for evaluation. YOLO-v7 achieved a superior mAP@0.5 of 96.1% and processed 40 FPS, outperforming Mask R-CNN, which achieved a mAP@0.5 of 92.1% with a slower processing speed of 18 FPS. The findings recommend YOLO-v7 instance segmentation model for real-time, high-speed structural health monitoring, while Mask R-CNN is better suited for detailed offline assessments. This study demonstrates the potential of deep learning to revolutionize infrastructure maintenance, offering a scalable and efficient solution for automated damage detection.
- Abstract(参考訳): 構造物の完全性は、橋、トンネル、壁などのコンクリート構造物の安全性と長寿を維持するために不可欠である。
ひび割れやひび割れなどの損傷を検知する従来の方法は、労働集約的であり、時間がかかり、人的ミスを起こしやすい。
これらの課題に対処するために,ディープラーニングを用いた高度なデータ駆動手法を探索し,損傷の自動検出と解析を行う。
2つの最先端インスタンスセグメントモデル、YOLO-v7インスタンスセグメンテーションとMask R-CNNを400の画像からなるデータセットを用いて評価した。
モデルはトレーニングされ、データセットを使用して90%のトレーニングセット、検証とテストセット10%に分割された。
評価には、精度、リコール、平均平均精度(mAP@0.5)、フレーム毎秒(FPS)などのパフォーマンス指標が用いられた。
YOLO-v7は96.1%のmAP@0.5を達成し、40 FPSを処理し、Mask R-CNNを上回り、mAP@0.5を92.1%、処理速度を18 FPSとした。
調査では、リアルタイムで高速な構造的健康モニタリングのためのYOLO-v7インスタンスセグメンテーションモデルが推奨され、Mask R-CNNは詳細なオフラインアセスメントに適している。
この研究は、インフラのメンテナンスに革命をもたらす深層学習の可能性を示し、自動損傷検出のためのスケーラブルで効率的なソリューションを提供する。
関連論文リスト
- Crack Detection in Infrastructure Using Transfer Learning, Spatial Attention, and Genetic Algorithm Optimization [3.1687473999848836]
亀裂検出は、道路、橋、建物などのインフラの維持と安全性において重要な役割を担っている。
伝統的に手動検査が標準であったが、労働集約的で主観的で危険である。
本稿では, 深層学習, 移動学習, 空間的注意機構, 遺伝的アルゴリズム(GA)最適化を活用した, インフラのひび割れ検出のための高度な手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T06:12:56Z) - Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
本稿では,ディープラーニングモデルを用いた道路損傷検出のための総合ワークフローを提案する。
ハードウェアの制約を満たすため、大きな画像が収穫され、軽量モデルが利用される。
提案手法では,コーディネートアテンションレイヤを備えたカスタムYOLOv7モデルや,Tiny YOLOv7モデルなど,複数のモデルアーキテクチャを採用している。
論文 参考訳(メタデータ) (2024-10-10T22:55:12Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - A Review and Implementation of Object Detection Models and Optimizations for Real-time Medical Mask Detection during the COVID-19 Pandemic [0.0]
この研究は、Common Objects in Context(COCO)データセット上で最も基本的なオブジェクト検出モデルを評価する。
我々は、医療マスクを用いた人間の顔の話題的、未探索のデータセットをトレーニングするために、YOLOv5と呼ばれる非常に効率的なモデルを選択した。
医療用マスクの正確な検出に移動学習を用いたYOLOv5に基づく最適化モデルを提案する。
論文 参考訳(メタデータ) (2024-05-28T17:27:24Z) - One-Shot Learning for Periocular Recognition: Exploring the Effect of
Domain Adaptation and Data Bias on Deep Representations [59.17685450892182]
広範に使用されているCNNモデルにおける深部表現の挙動をワンショット近視認識のための極端データ不足下で検討する。
我々は、バイオメトリックデータセットで訓練されたネットワークを数百万の画像で活用し、最先端の結果を改善した。
SIFTのような従来のアルゴリズムは、限られたデータでCNNより優れている。
論文 参考訳(メタデータ) (2023-07-11T09:10:16Z) - Dual flow fusion model for concrete surface crack segmentation [0.0]
亀裂やその他の損傷は交通インフラの安全運用に重大な脅威をもたらす。
ディープラーニングモデルは、実用的な視覚的セグメンテーションタスクに広く応用されている。
本稿では,二重ストリームの融合に基づくひび割れ分割モデルを提案する。
論文 参考訳(メタデータ) (2023-05-09T02:35:58Z) - A Computer Vision Enabled damage detection model with improved YOLOv5
based on Transformer Prediction Head [0.0]
現在の最先端ディープラーニング(DL)に基づく損傷検出モデルは、複雑でノイズの多い環境では優れた特徴抽出能力を欠いていることが多い。
DenseSPH-YOLOv5は、DenseNetブロックをバックボーンに統合したリアルタイムDLベースの高性能損傷検出モデルである。
DenseSPH-YOLOv5は平均平均精度(mAP)が85.25%、F1スコアが81.18%、精度(P)が89.51%である。
論文 参考訳(メタデータ) (2023-03-07T22:53:36Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - EAutoDet: Efficient Architecture Search for Object Detection [110.99532343155073]
EAutoDetフレームワークは、1.4GPU日でオブジェクト検出のための実用的なバックボーンとFPNアーキテクチャを検出できる。
本稿では,一方のエッジ上での候補演算の重みを共有し,それらを一つの畳み込みに集約することでカーネル再利用手法を提案する。
特に、発見されたアーキテクチャは最先端のオブジェクト検出NAS法を超越し、120 FPSで40.1 mAP、49.2 mAP、41.3 FPSをCOCOテストデブセットで達成している。
論文 参考訳(メタデータ) (2022-03-21T05:56:12Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
トランスフォーマーに基づく教師付き事前訓練は、人物再識別(ReID)において大きなパフォーマンスを達成する
ImageNetとReIDデータセットのドメインギャップのため、通常、パフォーマンスを高めるために、より大きなトレーニング済みデータセットが必要です。
この研究は、データとモデル構造の観点から、事前トレーニングデータセットとReIDデータセットのギャップを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-11-23T18:59:08Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。