論文の概要: Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning
- arxiv url: http://arxiv.org/abs/2501.12115v1
- Date: Tue, 21 Jan 2025 13:25:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:20.564702
- Title: Meta-Sparsity: Learning Optimal Sparse Structures in Multi-task Networks through Meta-learning
- Title(参考訳): メタスパーシティ:メタラーニングによるマルチタスクネットワークにおける最適スパース構造学習
- Authors: Richa Upadhyay, Ronald Phlypo, Rajkumar Saini, Marcus Liwicki,
- Abstract要約: Meta-sparsityは、ディープニューラルネットワーク(DNN)がマルチタスク学習環境で最適なスパース共有構造を生成することを可能にする、モデルのスパーシティを学習するためのフレームワークである。
Model Agnostic Meta-Learning (MAML)に触発され、マルチタスクシナリオにおける共有パラメータと最適なスパースパラメータの学習に重点を置いている。
メタスパーシティーの有効性は、2つのデータセットに対する広範な実験によって厳格に評価されている。
- 参考スコア(独自算出の注目度): 4.462334751640166
- License:
- Abstract: This paper presents meta-sparsity, a framework for learning model sparsity, basically learning the parameter that controls the degree of sparsity, that allows deep neural networks (DNNs) to inherently generate optimal sparse shared structures in multi-task learning (MTL) setting. This proposed approach enables the dynamic learning of sparsity patterns across a variety of tasks, unlike traditional sparsity methods that rely heavily on manual hyperparameter tuning. Inspired by Model Agnostic Meta-Learning (MAML), the emphasis is on learning shared and optimally sparse parameters in multi-task scenarios by implementing a penalty-based, channel-wise structured sparsity during the meta-training phase. This method improves the model's efficacy by removing unnecessary parameters and enhances its ability to handle both seen and previously unseen tasks. The effectiveness of meta-sparsity is rigorously evaluated by extensive experiments on two datasets, NYU-v2 and CelebAMask-HQ, covering a broad spectrum of tasks ranging from pixel-level to image-level predictions. The results show that the proposed approach performs well across many tasks, indicating its potential as a versatile tool for creating efficient and adaptable sparse neural networks. This work, therefore, presents an approach towards learning sparsity, contributing to the efforts in the field of sparse neural networks and suggesting new directions for research towards parsimonious models.
- Abstract(参考訳): 本稿では,マルチタスク学習(MTL)設定において,深層ニューラルネットワーク(DNN)が本質的に最適なスパース共有構造を生成できるような,スパーシティの程度を制御するパラメータを学習するメタスパーシティについて述べる。
提案手法は,手動のハイパーパラメータチューニングに大きく依存する従来の疎度手法とは異なり,様々なタスクにわたる疎度パターンの動的学習を可能にする。
Model Agnostic Meta-Learning (MAML)に触発されて、メタトレーニングフェーズ中にペナルティベースのチャネル単位で構造化されたスパーシティを実装することで、マルチタスクシナリオにおける共有パラメータと最適スパースパラメータの学習に重点を置いている。
この方法は不要なパラメータを除去することでモデルの有効性を向上し、目に見えないタスクと以前は見えないタスクの両方を扱う能力を高める。
メタスパーシティーの有効性は、NYU-v2とCelebAMask-HQという2つのデータセットの広範な実験によって厳密に評価され、ピクセルレベルから画像レベルの予測まで幅広いタスクをカバーしている。
その結果、提案手法は多くのタスクでうまく機能し、効率よく適応可能なスパースニューラルネットワークを作成するための汎用的なツールとしての可能性を示している。
この研究は、疎性学習へのアプローチを示し、スパースニューラルネットワークの分野における取り組みに寄与し、相似モデル研究のための新しい方向性を提案する。
関連論文リスト
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Learning Compact Neural Networks with Deep Overparameterised Multitask
Learning [0.0]
パラメータ化ニューラルネットワーク設計よりも単純で効率的で効果的なマルチタスク学習を提案する。
2つの挑戦的マルチタスクデータセット(NYUv2とCOCO)の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-08-25T10:51:02Z) - Meta-Learning via Classifier(-free) Guidance [5.812784742024491]
最先端のメタ学習技術は、目に見えないタスクへのゼロショット適応を最適化しない。
本稿では,自然言語指導によるゼロショット性能向上のためのメタ学習手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T11:09:35Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
継続的学習のための簡易タスク特化機能マップ変換戦略を提案する。
これらは新しいタスクを学習するための強力な柔軟性を提供し、ベースアーキテクチャに最小パラメータを追加することで実現される。
本手法の有効性と効率を,判別(cifar-100およびimagenet-1k)および生成的タスクの一連の実験を用いて実証する。
論文 参考訳(メタデータ) (2021-03-25T01:48:14Z) - MetaGater: Fast Learning of Conditional Channel Gated Networks via
Federated Meta-Learning [46.79356071007187]
本稿では,バックボーンネットワークとチャネルゲーティングを協調的にトレーニングするための総合的なアプローチを提案する。
我々は,バックボーンネットワークとゲーティングモジュールの両方において,優れたメタ初期化を共同で学習するための,連携型メタ学習手法を開発した。
論文 参考訳(メタデータ) (2020-11-25T04:26:23Z) - Meta-Learning with Network Pruning [40.07436648243748]
本稿では,ネットワークのキャパシティを明示的に制御することで,ネットワークプルーニングに基づくメタラーニング手法を提案する。
我々はDense-Sparse-Dense (DSD) と Iterative Hard Thresholding (IHT) の2つのネットワークプルーニングルーチンを組み込んだReptile上でのアプローチを実装した。
論文 参考訳(メタデータ) (2020-07-07T06:13:11Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。