SVGS-DSGAT: An IoT-Enabled Innovation in Underwater Robotic Object Detection Technology
- URL: http://arxiv.org/abs/2501.12169v1
- Date: Tue, 21 Jan 2025 14:29:27 GMT
- Title: SVGS-DSGAT: An IoT-Enabled Innovation in Underwater Robotic Object Detection Technology
- Authors: Dongli Wu, Ling Luo,
- Abstract summary: This paper introduces a novel SVGS-DSGAT model that enhances target detection capabilities through graph neural networks and attention mechanisms.
Experimental results demonstrate that the model achieves an mAP of 40.8% on the URPC 2020 dataset and 41.5% on the SeaDronesSee dataset.
This research provides an effective IoT solution for underwater target detection technology, offering significant practical application value and broad development prospects.
- Score: 2.787322279937174
- License:
- Abstract: With the advancement of Internet of Things (IoT) technology, underwater target detection and tracking have become increasingly important for ocean monitoring and resource management. Existing methods often fall short in handling high-noise and low-contrast images in complex underwater environments, lacking precision and robustness. This paper introduces a novel SVGS-DSGAT model that combines GraphSage, SVAM, and DSGAT modules, enhancing feature extraction and target detection capabilities through graph neural networks and attention mechanisms. The model integrates IoT technology to facilitate real-time data collection and processing, optimizing resource allocation and model responsiveness. Experimental results demonstrate that the SVGS-DSGAT model achieves an mAP of 40.8% on the URPC 2020 dataset and 41.5% on the SeaDronesSee dataset, significantly outperforming existing mainstream models. This IoT-enhanced approach not only excels in high-noise and complex backgrounds but also improves the overall efficiency and scalability of the system. This research provides an effective IoT solution for underwater target detection technology, offering significant practical application value and broad development prospects.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation [2.3636539018632616]
This work empirically investigates the optimization of complex deep learning models to analyze their functionality on an embedded device.
It evaluates the effectiveness of the optimized models in terms of their inference speed for image classification and video action detection.
arXiv Detail & Related papers (2024-06-25T17:34:52Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Research on Detection of Floating Objects in River and Lake Based on AI Intelligent Image Recognition [12.315852697312195]
This study focuses on the detection of floating objects in river and lake environments, exploring an innovative approach based on deep learning.
The proposed system has demonstrated its ability to significantly enhance the accuracy and efficiency of debris detection, thus offering a new technological avenue for water quality monitoring in rivers and lakes.
arXiv Detail & Related papers (2024-04-10T10:13:37Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
We present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture.
Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects.
arXiv Detail & Related papers (2024-01-26T05:50:58Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - D-SRGAN: DEM Super-Resolution with Generative Adversarial Networks [0.0]
LIDAR data has been used as the primary source of Digital Elevation Models (DEMs)
DEMs have been used in a variety of applications like road extraction, hydrological modeling, flood mapping, and surface analysis.
Deep learning techniques have become attractive to researchers for their performance in learning features from high-resolution datasets.
arXiv Detail & Related papers (2020-04-09T19:57:49Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.