CDW-CoT: Clustered Distance-Weighted Chain-of-Thoughts Reasoning
- URL: http://arxiv.org/abs/2501.12226v1
- Date: Tue, 21 Jan 2025 15:51:07 GMT
- Title: CDW-CoT: Clustered Distance-Weighted Chain-of-Thoughts Reasoning
- Authors: Yuanheng Fang, Guoqing Chao, Wenqiang Lei, Shaobo Li, Dianhui Chu,
- Abstract summary: We propose the Clustered Distance-Weighted Chain of Thought (CDW-CoT) method.<n>It dynamically constructs prompts tailored to the characteristics of each data instance.<n>It consistently outperforms traditional CoT methods across six datasets.
- Score: 16.502640216082547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have recently achieved impressive results in complex reasoning tasks through Chain of Thought (CoT) prompting. However, most existing CoT methods rely on using the same prompts, whether manually designed or automatically generated, to handle the entire dataset. This one-size-fits-all approach may fail to meet the specific needs arising from the diversities within a single dataset. To solve this problem, we propose the Clustered Distance-Weighted Chain of Thought (CDW-CoT) method, which dynamically constructs prompts tailored to the characteristics of each data instance by integrating clustering and prompt optimization techniques. Our method employs clustering algorithms to categorize the dataset into distinct groups, from which a candidate pool of prompts is selected to reflect the inherent diversity within the dataset. For each cluster, CDW-CoT trains the optimal prompt probability distribution tailored to their specific characteristics. Finally, it dynamically constructs a unique prompt probability distribution for each test instance, based on its proximity to cluster centers, from which prompts are selected for reasoning. CDW-CoT consistently outperforms traditional CoT methods across six datasets, including commonsense, symbolic, and mathematical reasoning tasks. Specifically, when compared to manual CoT, CDW-CoT achieves an average accuracy improvement of 25.34% on LLaMA2 (13B) and 15.72% on LLaMA3 (8B).
Related papers
- K*-Means: A Parameter-free Clustering Algorithm [55.20132267309382]
k*-means is a novel clustering algorithm that eliminates the need to set k or any other parameters.<n>It uses the minimum description length principle to automatically determine the optimal number of clusters, k*, by splitting and merging clusters.<n>We prove that k*-means is guaranteed to converge and demonstrate experimentally that it significantly outperforms existing methods in scenarios where k is unknown.
arXiv Detail & Related papers (2025-05-17T08:41:07Z) - Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning [53.527506374566485]
We propose a novel Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning cluster framework, namely AR-DBSCAN.<n>We show that AR-DBSCAN not only improves clustering accuracy by up to 144.1% and 175.3% in the NMI and ARI metrics, respectively, but also is capable of robustly finding dominant parameters.
arXiv Detail & Related papers (2025-05-07T11:37:23Z) - Subset Selection for Fine-Tuning: A Utility-Diversity Balanced Approach for Mathematical Domain Adaptation [0.0]
We propose a refined approach to efficiently fine-tune large language models (LLMs) on specific domains like the mathematical domain.<n>Our approach combines utility and diversity metrics to select the most informative and representative training examples.
arXiv Detail & Related papers (2025-05-02T18:20:44Z) - AdaptiveMDL-GenClust: A Robust Clustering Framework Integrating Normalized Mutual Information and Evolutionary Algorithms [0.0]
We introduce a robust clustering framework that integrates the Minimum Description Length (MDL) principle with a genetic optimization algorithm.<n>The framework begins with an ensemble clustering approach to generate an initial clustering solution, which is refined using MDL-guided evaluation functions and optimized through a genetic algorithm.<n> Experimental results demonstrate that our approach consistently outperforms traditional clustering methods, yielding higher accuracy, improved stability, and reduced bias.
arXiv Detail & Related papers (2024-11-26T20:26:14Z) - MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
In cross-domain few-shot classification, NCC aims to learn representations to construct a metric space where few-shot classification can be performed.
In this paper, we find that there exist high similarities between NCC-learned representations of two samples from different classes.
We propose a bi-level optimization framework, emphmaximizing optimized kernel dependence (MOKD) to learn a set of class-specific representations that match the cluster structures indicated by labeled data.
arXiv Detail & Related papers (2024-05-29T05:59:52Z) - From Large to Small Datasets: Size Generalization for Clustering
Algorithm Selection [12.993073967843292]
We study a problem in a semi-supervised setting, with an unknown ground-truth clustering.
We introduce a notion of size generalization for clustering algorithm accuracy.
We use a subsample of as little as 5% of the data to identify which algorithm is best on the full dataset.
arXiv Detail & Related papers (2024-02-22T06:53:35Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - Generalizable Chain-of-Thought Prompting in Mixed-task Scenarios with
Large Language Models [68.05046964022844]
Large language models (LLMs) have unveiled remarkable reasoning capabilities by exploiting chain-of-thought (CoT) prompting.
We propose GeM-CoT, a Generalizable CoT prompting mechanism in Mixed-task scenarios where the type of input questions is unknown.
With this technical design, GeM-CoT simultaneously enjoys superior generalization capabilities and remarkable performances on 10 public reasoning tasks and 23 BBH tasks.
arXiv Detail & Related papers (2023-10-10T15:10:03Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Automatic Prompt Augmentation and Selection with Chain-of-Thought from
Labeled Data [20.68548644283721]
Chain-of-thought (CoT) advances the reasoning abilities of large language models (LLMs)
Most CoT studies rely on carefully designed human-annotated rational chains to prompt LLMs.
This paper proposes a new strategy that can bypass human engineering of CoT.
arXiv Detail & Related papers (2023-02-24T18:58:06Z) - Robust Trimmed k-means [70.88503833248159]
We propose Robust Trimmed k-means (RTKM) that simultaneously identifies outliers and clusters points.
We show RTKM performs competitively with other methods on single membership data with outliers and multi-membership data without outliers.
arXiv Detail & Related papers (2021-08-16T15:49:40Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Too Much Information Kills Information: A Clustering Perspective [6.375668163098171]
We propose a simple, but novel approach for variance-based k-clustering tasks, including in which is the widely known k-means clustering.
The proposed approach picks a sampling subset from the given dataset and makes decisions based on the data information in the subset only.
With certain assumptions, the resulting clustering is provably good to estimate the optimum of the variance-based objective with high probability.
arXiv Detail & Related papers (2020-09-16T01:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.