Fast sparse optimization via adaptive shrinkage
- URL: http://arxiv.org/abs/2501.12236v1
- Date: Tue, 21 Jan 2025 15:58:21 GMT
- Title: Fast sparse optimization via adaptive shrinkage
- Authors: Vito Cerone, Sophie M. Fosson, Diego Regruto,
- Abstract summary: We develop a proximal method, based on logarithmic regularization, which turns out to be an iterative shrinkage-thresholding algorithm.
This adaptivity substantially enhances the trajectory of the algorithm, in a way that yields faster convergence.
We validate its fast convergence via numerical experiments and we discuss the performance with respect to state-of-the-art algorithms.
- Score: 0.6226609932118122
- License:
- Abstract: The need for fast sparse optimization is emerging, e.g., to deal with large-dimensional data-driven problems and to track time-varying systems. In the framework of linear sparse optimization, the iterative shrinkage-thresholding algorithm is a valuable method to solve Lasso, which is particularly appreciated for its ease of implementation. Nevertheless, it converges slowly. In this paper, we develop a proximal method, based on logarithmic regularization, which turns out to be an iterative shrinkage-thresholding algorithm with adaptive shrinkage hyperparameter. This adaptivity substantially enhances the trajectory of the algorithm, in a way that yields faster convergence, while keeping the simplicity of the original method. Our contribution is twofold: on the one hand, we derive and analyze the proposed algorithm; on the other hand, we validate its fast convergence via numerical experiments and we discuss the performance with respect to state-of-the-art algorithms.
Related papers
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Ordering for Non-Replacement SGD [7.11967773739707]
We seek to find an ordering that can improve the convergence rates for the non-replacement form of the algorithm.
We develop optimal orderings for constant and decreasing step sizes for strongly convex and convex functions.
In addition, we are able to combine the ordering with mini-batch and further apply it to more complex neural networks.
arXiv Detail & Related papers (2023-06-28T00:46:58Z) - Faster Margin Maximization Rates for Generic and Adversarially Robust Optimization Methods [20.118513136686452]
First-order optimization methods tend to inherently favor certain solutions over others when minimizing an underdetermined training objective.
We present a series of state-of-the-art implicit bias rates for mirror descent and steepest descent algorithms.
Our accelerated rates are derived by leveraging the regret bounds of online learning algorithms within this game framework.
arXiv Detail & Related papers (2023-05-27T18:16:56Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
We show that an increasing large momentum parameter for the first-order moment is sufficient for adaptive scaling.
We also give insights for increasing the momentum in a stagewise manner in accordance with stagewise decreasing step size.
arXiv Detail & Related papers (2021-04-30T08:50:24Z) - Distributed Proximal Splitting Algorithms with Rates and Acceleration [7.691755449724637]
We derive sublinear and linear convergence results with new rates on the function value suboptimality or distance to the solution.
We propose distributed variants of these algorithms, which can be accelerated as well.
arXiv Detail & Related papers (2020-10-02T12:35:09Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.