Faster Margin Maximization Rates for Generic and Adversarially Robust Optimization Methods
- URL: http://arxiv.org/abs/2305.17544v2
- Date: Sun, 7 Apr 2024 18:45:20 GMT
- Title: Faster Margin Maximization Rates for Generic and Adversarially Robust Optimization Methods
- Authors: Guanghui Wang, Zihao Hu, Claudio Gentile, Vidya Muthukumar, Jacob Abernethy,
- Abstract summary: First-order optimization methods tend to inherently favor certain solutions over others when minimizing an underdetermined training objective.
We present a series of state-of-the-art implicit bias rates for mirror descent and steepest descent algorithms.
Our accelerated rates are derived by leveraging the regret bounds of online learning algorithms within this game framework.
- Score: 20.118513136686452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: First-order optimization methods tend to inherently favor certain solutions over others when minimizing an underdetermined training objective that has multiple global optima. This phenomenon, known as implicit bias, plays a critical role in understanding the generalization capabilities of optimization algorithms. Recent research has revealed that in separable binary classification tasks gradient-descent-based methods exhibit an implicit bias for the $\ell_2$-maximal margin classifier. Similarly, generic optimization methods, such as mirror descent and steepest descent, have been shown to converge to maximal margin classifiers defined by alternative geometries. While gradient-descent-based algorithms provably achieve fast implicit bias rates, corresponding rates in the literature for generic optimization methods are relatively slow. To address this limitation, we present a series of state-of-the-art implicit bias rates for mirror descent and steepest descent algorithms. Our primary technique involves transforming a generic optimization algorithm into an online optimization dynamic that solves a regularized bilinear game, providing a unified framework for analyzing the implicit bias of various optimization methods. Our accelerated rates are derived by leveraging the regret bounds of online learning algorithms within this game framework. We then show the flexibility of this framework by analyzing the implicit bias in adversarial training, and again obtain significantly improved convergence rates.
Related papers
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning [5.325297567945828]
We propose a new method for two-time-scale optimization that achieves significantly faster convergence than the prior arts.
We characterize the proposed algorithm under various conditions and show how it specializes on online sample-based methods.
arXiv Detail & Related papers (2024-05-15T19:03:08Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Optimistic Optimisation of Composite Objective with Exponentiated Update [2.1700203922407493]
The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm.
They achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables.
arXiv Detail & Related papers (2022-08-08T11:29:55Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.