VipDiff: Towards Coherent and Diverse Video Inpainting via Training-free Denoising Diffusion Models
- URL: http://arxiv.org/abs/2501.12267v1
- Date: Tue, 21 Jan 2025 16:39:09 GMT
- Title: VipDiff: Towards Coherent and Diverse Video Inpainting via Training-free Denoising Diffusion Models
- Authors: Chaohao Xie, Kai Han, Kwan-Yee K. Wong,
- Abstract summary: VipDiff is a framework for conditioning diffusion model on the reverse diffusion process to produce temporal-coherent inpainting results.
It can largely outperform state-of-the-art video inpainting methods in terms of both spatial-temporal coherence and fidelity.
- Score: 21.584843961386888
- License:
- Abstract: Recent video inpainting methods have achieved encouraging improvements by leveraging optical flow to guide pixel propagation from reference frames either in the image space or feature space. However, they would produce severe artifacts in the mask center when the masked area is too large and no pixel correspondences can be found for the center. Recently, diffusion models have demonstrated impressive performance in generating diverse and high-quality images, and have been exploited in a number of works for image inpainting. These methods, however, cannot be applied directly to videos to produce temporal-coherent inpainting results. In this paper, we propose a training-free framework, named VipDiff, for conditioning diffusion model on the reverse diffusion process to produce temporal-coherent inpainting results without requiring any training data or fine-tuning the pre-trained diffusion models. VipDiff takes optical flow as guidance to extract valid pixels from reference frames to serve as constraints in optimizing the randomly sampled Gaussian noise, and uses the generated results for further pixel propagation and conditional generation. VipDiff also allows for generating diverse video inpainting results over different sampled noise. Experiments demonstrate that VipDiff can largely outperform state-of-the-art video inpainting methods in terms of both spatial-temporal coherence and fidelity.
Related papers
- DiffuEraser: A Diffusion Model for Video Inpainting [13.292164408616257]
We introduce DiffuEraser, a video inpainting model based on stable diffusion, to fill masked regions with greater details and more coherent structures.
We also expand the temporal receptive fields of both the prior model and DiffuEraser, and further enhance consistency by leveraging the temporal smoothing property of Video Diffusion Models.
arXiv Detail & Related papers (2025-01-17T08:03:02Z) - Optical-Flow Guided Prompt Optimization for Coherent Video Generation [51.430833518070145]
We propose a framework called MotionPrompt that guides the video generation process via optical flow.
We optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs.
This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content.
arXiv Detail & Related papers (2024-11-23T12:26:52Z) - Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Solving Video Inverse Problems Using Image Diffusion Models [58.464465016269614]
We introduce an innovative video inverse solver that leverages only image diffusion models.
Our method treats the time dimension of a video as the batch dimension image diffusion models.
We also introduce a batch-consistent sampling strategy that encourages consistency across batches.
arXiv Detail & Related papers (2024-09-04T09:48:27Z) - Video Diffusion Models are Strong Video Inpainter [14.402778136825642]
We propose a novel First Frame Filling Video Diffusion Inpainting model (FFF-VDI)
We propagate the noise latent information of future frames to fill the masked areas of the first frame's noise latent code.
Next, we fine-tune the pre-trained image-to-video diffusion model to generate the inpainted video.
arXiv Detail & Related papers (2024-08-21T08:01:00Z) - Flow-Guided Diffusion for Video Inpainting [14.168532703086672]
Video inpainting has been challenged by complex scenarios like large movements and low-light conditions.
Current methods, including emerging diffusion models, face limitations in quality and efficiency.
This paper introduces the Flow-Guided Diffusion model for Video Inpainting (FGDVI), a novel approach that significantly enhances temporal consistency and inpainting quality.
arXiv Detail & Related papers (2023-11-26T17:48:48Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
This work presents a decomposed diffusion process via resolving the per-frame noise into a base noise that is shared among all frames and a residual noise that varies along the time axis.
Experiments on various datasets confirm that our approach, termed as VideoFusion, surpasses both GAN-based and diffusion-based alternatives in high-quality video generation.
arXiv Detail & Related papers (2023-03-15T02:16:39Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
We present a pixel aggregation network and learn the pixel sampling and averaging strategies for image denoising.
We develop a pixel aggregation network for video denoising to sample pixels across the spatial-temporal space.
Our method is able to solve the misalignment issues caused by large motion in dynamic scenes.
arXiv Detail & Related papers (2021-01-26T13:00:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.