Flow-Guided Diffusion for Video Inpainting
- URL: http://arxiv.org/abs/2311.15368v1
- Date: Sun, 26 Nov 2023 17:48:48 GMT
- Title: Flow-Guided Diffusion for Video Inpainting
- Authors: Bohai Gu, Yongsheng Yu, Heng Fan, Libo Zhang
- Abstract summary: Video inpainting has been challenged by complex scenarios like large movements and low-light conditions.
Current methods, including emerging diffusion models, face limitations in quality and efficiency.
This paper introduces the Flow-Guided Diffusion model for Video Inpainting (FGDVI), a novel approach that significantly enhances temporal consistency and inpainting quality.
- Score: 15.478104117672803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video inpainting has been challenged by complex scenarios like large
movements and low-light conditions. Current methods, including emerging
diffusion models, face limitations in quality and efficiency. This paper
introduces the Flow-Guided Diffusion model for Video Inpainting (FGDVI), a
novel approach that significantly enhances temporal consistency and inpainting
quality via reusing an off-the-shelf image generation diffusion model. We
employ optical flow for precise one-step latent propagation and introduces a
model-agnostic flow-guided latent interpolation technique. This technique
expedites denoising, seamlessly integrating with any Video Diffusion Model
(VDM) without additional training. Our FGDVI demonstrates a remarkable 10%
improvement in flow warping error E_warp over existing state-of-the-art
methods. Our comprehensive experiments validate superior performance of FGDVI,
offering a promising direction for advanced video inpainting. The code and
detailed results will be publicly available in
https://github.com/NevSNev/FGDVI.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - VideoGuide: Improving Video Diffusion Models without Training Through a Teacher's Guide [48.22321420680046]
VideoGuide is a novel framework that enhances the temporal consistency of pretrained text-to-video (T2V) models.
It improves temporal quality by interpolating the guiding model's denoised samples into the sampling model's denoising process.
The proposed method brings about significant improvement in temporal consistency and image fidelity.
arXiv Detail & Related papers (2024-10-06T05:46:17Z) - Noise Crystallization and Liquid Noise: Zero-shot Video Generation using Image Diffusion Models [6.408114351192012]
Video models require extensive training and computational resources, leading to high costs and large environmental impacts.
This paper introduces a novel approach to video generation by augmenting image diffusion models to create sequential animation frames while maintaining fine detail.
arXiv Detail & Related papers (2024-10-05T12:53:05Z) - Video Diffusion Models are Strong Video Inpainter [14.402778136825642]
We propose a novel First Frame Filling Video Diffusion Inpainting model (FFF-VDI)
We propagate the noise latent information of future frames to fill the masked areas of the first frame's noise latent code.
Next, we fine-tune the pre-trained image-to-video diffusion model to generate the inpainted video.
arXiv Detail & Related papers (2024-08-21T08:01:00Z) - Be-Your-Outpainter: Mastering Video Outpainting through Input-Specific Adaptation [44.92712228326116]
Video outpainting is a challenging task, aiming at generating video content outside the viewport of the input video.
We introduce MOTIA Mastering Video Outpainting Through Input-Specific Adaptation.
MoTIA comprises two main phases: input-specific adaptation and pattern-aware outpainting.
arXiv Detail & Related papers (2024-03-20T16:53:45Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - VIDM: Video Implicit Diffusion Models [75.90225524502759]
Diffusion models have emerged as a powerful generative method for synthesizing high-quality and diverse set of images.
We propose a video generation method based on diffusion models, where the effects of motion are modeled in an implicit condition.
We improve the quality of the generated videos by proposing multiple strategies such as sampling space truncation, robustness penalty, and positional group normalization.
arXiv Detail & Related papers (2022-12-01T02:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.