論文の概要: VARGPT: Unified Understanding and Generation in a Visual Autoregressive Multimodal Large Language Model
- arxiv url: http://arxiv.org/abs/2501.12327v1
- Date: Tue, 21 Jan 2025 17:50:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:22:07.689063
- Title: VARGPT: Unified Understanding and Generation in a Visual Autoregressive Multimodal Large Language Model
- Title(参考訳): VARGPT:視覚的自己回帰型マルチモーダル大言語モデルにおける統一的理解と生成
- Authors: Xianwei Zhuang, Yuxin Xie, Yufan Deng, Liming Liang, Jinghan Ru, Yuguo Yin, Yuexian Zou,
- Abstract要約: VARGPTは,単一の自己回帰フレームワーク内で視覚的理解と生成を統一する,新しいマルチモーダル大規模言語モデルである。
VarGPTは視覚理解のための次世代予測パラダイムと、視覚自己回帰生成のための次世代予測パラダイムを採用している。
特に、VARGPTは自己回帰的視覚生成と命令-画像合成の能力を自然にサポートし、視覚的理解と生成の両タスクにおいてその汎用性を示す。
- 参考スコア(独自算出の注目度): 38.61292051733335
- License:
- Abstract: We present VARGPT, a novel multimodal large language model (MLLM) that unifies visual understanding and generation within a single autoregressive framework. VARGPT employs a next-token prediction paradigm for visual understanding and a next-scale prediction paradigm for visual autoregressive generation. VARGPT innovatively extends the LLaVA architecture, achieving efficient scale-wise autoregressive visual generation within MLLMs while seamlessly accommodating mixed-modal input and output within a single model framework. Our VARGPT undergoes a three-stage unified training process on specially curated datasets, comprising a pre-training phase and two mixed visual instruction-tuning phases. The unified training strategy are designed to achieve alignment between visual and textual features, enhance instruction following for both understanding and generation, and improve visual generation quality, respectively. Despite its LLAVA-based architecture for multimodel understanding, VARGPT significantly outperforms LLaVA-1.5 across various vision-centric benchmarks, such as visual question-answering and reasoning tasks. Notably, VARGPT naturally supports capabilities in autoregressive visual generation and instruction-to-image synthesis, showcasing its versatility in both visual understanding and generation tasks. Project page is at: \url{https://vargpt-1.github.io/}
- Abstract(参考訳): VARGPTは,単一の自己回帰フレームワーク内で視覚的理解と生成を統一する,新しいマルチモーダル大規模言語モデルである。
VARGPTは視覚理解のための次世代予測パラダイムと、視覚自己回帰生成のための次世代予測パラダイムを用いる。
VARGPTは、LLaVAアーキテクチャを革新的に拡張し、MLLM内で効率的なスケールワイドの自己回帰視覚生成を実現し、単一のモデルフレームワーク内で混合モード入力と出力をシームレスに調整する。
我々のVARGPTは、事前学習フェーズと2つの混合視覚訓練フェーズからなる、特別に訓練されたデータセットの3段階の統合トレーニングプロセスを実行している。
統合されたトレーニング戦略は、視覚的特徴とテキスト的特徴の整合性を達成し、理解と生成の両方に対する指示の強化と、視覚的生成品質の向上を目的としている。
マルチモデル理解のためのLLAVAベースのアーキテクチャにもかかわらず、VARGPTは視覚的質問応答や推論タスクなど、様々な視覚中心のベンチマークにおいて、LLaVA-1.5を著しく上回っている。
特に、VARGPTは自己回帰的視覚生成と命令-画像合成の能力を自然にサポートし、視覚的理解と生成の両タスクにおいてその汎用性を示す。
Project page is at: \url{https://vargpt-1.github.io/}
関連論文リスト
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VLは、事前訓練された大規模言語モデルに基づいてモデルをチューニングする効率的な視覚言語手法である。
我々のフレームワークはScienceQAデータセットの平均精度を0.77%上回る。
論文 参考訳(メタデータ) (2024-10-23T11:31:06Z) - VILA-U: a Unified Foundation Model Integrating Visual Understanding and Generation [45.52926475981602]
VILA-Uは、ビデオ、画像、言語理解、生成を統合する統一基盤モデルである。
VILA-Uは、両方のタスクに1つの自動回帰的な次世代予測フレームワークを使用している。
論文 参考訳(メタデータ) (2024-09-06T17:49:56Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEnは、マルチモーダル大言語モデル(MLLM)のマルチモーダル推論能力を高めるために設計された革新的なフレームワークである。
MaVEnは複雑なマルチイメージのシナリオにおけるMLLMの理解を著しく向上するとともに,単一イメージのコンテキストにおけるパフォーマンスも向上することを示す。
論文 参考訳(メタデータ) (2024-08-22T11:57:16Z) - VL-GPT: A Generative Pre-trained Transformer for Vision and Language
Understanding and Generation [79.02357561313785]
視覚・言語データの同時認識・生成に長けたトランスモデルであるVL-GPT(Vision-Language Generative Pre-Traited Transformer)を導入する。
VL-GPTは、直感的な自己回帰的目的を用いることで、画像とテキストのモダリティを統一した事前学習アプローチを実現する。
論文 参考訳(メタデータ) (2023-12-14T18:59:43Z) - Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$は、視覚条件付き言語生成モデルの事前トレーニング用に設計されたフレームワークである。
提案手法は,視覚言語モデルの学習を5倍に加速させるが,全体的な性能に顕著な影響を与えないことを示す。
論文 参考訳(メタデータ) (2023-10-05T03:40:06Z) - VS-TransGRU: A Novel Transformer-GRU-based Framework Enhanced by
Visual-Semantic Fusion for Egocentric Action Anticipation [33.41226268323332]
エゴセントリックなアクション予測は、一人称視点で将来のアクションを先進的に予測することを目的とした課題である。
既存のほとんどの手法は、視覚入力とリカレントニューラルネットワークに基づくモデルアーキテクチャと損失関数の改善に重点を置いている。
本稿では,新しいビジュアル・セマンティック融合とトランスフォーマーGRUに基づくアクション予測フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-08T06:49:54Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
視覚と言語(V-L)タスクは、視覚内容と自然言語の両方を理解する必要がある。
視覚と言語に対する注意空間を分離したDiMBERT(Disentangled Multimodal-Attention BERT)を提案する。
DiMBERTは3つのタスクに対して最新のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-10-28T23:00:40Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。