論文の概要: Cinepro: Robust Training of Foundation Models for Cancer Detection in Prostate Ultrasound Cineloops
- arxiv url: http://arxiv.org/abs/2501.12331v1
- Date: Tue, 21 Jan 2025 18:05:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:43.420476
- Title: Cinepro: Robust Training of Foundation Models for Cancer Detection in Prostate Ultrasound Cineloops
- Title(参考訳): Cinepro:前立腺超音波Cineloopにおける癌検出の基礎モデルのロバストトレーニング
- Authors: Mohamed Harmanani, Amoon Jamzad, Minh Nguyen Nhat To, Paul F. R. Wilson, Zhuoxin Guo, Fahimeh Fooladgar, Samira Sojoudi, Mahdi Gilany, Silvia Chang, Peter Black, Michael Leveridge, Robert Siemens, Purang Abolmaesumi, Parvin Mousavi,
- Abstract要約: 我々は,前立腺癌(PCa)を超音波シネループ内に局在させる基礎モデルの能力を強化するフレームワークであるCineproを紹介する。
シネプロは、バイオプシーコアの病理から報告されるがん組織の割合を、ラベルノイズに対処するための損失関数に組み込むことで、堅牢なトレーニングに適応する。
マルチセンター前立腺超音波データセットにおいて、77.1%のAUROCと83.8%のバランスの取れた精度を達成し、優れた性能を示す。
- 参考スコア(独自算出の注目度): 3.034460890230546
- License:
- Abstract: Prostate cancer (PCa) detection using deep learning (DL) models has shown potential for enhancing real-time guidance during biopsies. However, prostate ultrasound images lack pixel-level cancer annotations, introducing label noise. Current approaches often focus on limited regions of interest (ROIs), disregarding anatomical context necessary for accurate diagnosis. Foundation models can overcome this limitation by analyzing entire images to capture global spatial relationships; however, they still encounter challenges stemming from the weak labels associated with coarse pathology annotations in ultrasound data. We introduce Cinepro, a novel framework that strengthens foundation models' ability to localize PCa in ultrasound cineloops. Cinepro adapts robust training by integrating the proportion of cancer tissue reported by pathology in a biopsy core into its loss function to address label noise, providing a more nuanced supervision. Additionally, it leverages temporal data across multiple frames to apply robust augmentations, enhancing the model's ability to learn stable cancer-related features. Cinepro demonstrates superior performance on a multi-center prostate ultrasound dataset, achieving an AUROC of 77.1% and a balanced accuracy of 83.8%, surpassing current benchmarks. These findings underscore Cinepro's promise in advancing foundation models for weakly labeled ultrasound data.
- Abstract(参考訳): 深層学習(DL)モデルを用いた前立腺癌 (PCa) 検出は, 生検中のリアルタイムガイダンスを高める可能性を示唆している。
しかし、前立腺超音波画像にはピクセルレベルのがんアノテーションがなく、ラベルノイズが導入された。
現在のアプローチは、しばしば関心の限られた領域(ROI)に焦点を当て、正確な診断に必要な解剖学的コンテキストを無視している。
基礎モデルは、全画像を分析し、グローバルな空間的関係を捉えることで、この制限を克服することができるが、超音波データにおける粗い病理アノテーションに関連する弱いラベルから生じる課題に依然として遭遇している。
我々は,基礎モデルの超音波シネループにおけるPCaの局在化能力を高める新しいフレームワークであるCineproを紹介する。
シネプロは、バイオプシーコアの病理組織から報告されるがん組織の割合を、ラベルノイズに対処するために損失関数に組み込むことによって、堅牢なトレーニングに適応し、より微妙な監督を提供する。
さらに、複数のフレームにまたがる時間的データを活用して、堅牢な拡張を適用し、安定したがん関連の特徴を学習するモデルの能力を高める。
Cineproはマルチセンター前立腺超音波データセットで優れた性能を示し、AUROCは77.1%、精度は83.8%に達し、現在のベンチマークを上回っている。
これらの知見は、弱いラベル付き超音波データの基礎モデルの発展におけるCineproの約束を裏付けるものである。
関連論文リスト
- Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence [83.02106623401885]
プライバシー保護型超音波基礎モデルであるUltraFedFMを提案する。
UltraFedFMは、9か国の16の分散医療機関にわたる連合学習を用いて、協調的に事前訓練されている。
疾患診断には0.927のレシーバ動作特性曲線、病変セグメント化には0.878のサイス類似係数を平均的に達成する。
論文 参考訳(メタデータ) (2024-11-25T13:40:11Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - ProsDectNet: Bridging the Gap in Prostate Cancer Detection via
Transrectal B-mode Ultrasound Imaging [2.6024562346319167]
ProsDectNetはBモード超音波で前立腺がんを局在させるマルチタスクディープラーニングアプローチである。
MRI-TRUS 融合生検を施行した289例のコホートを用いて, ProsDectNet の訓練と評価を行った。
以上の結果から,ProsDectNetはコンピュータ支援診断システムとして利用できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-12-08T19:40:35Z) - Breast Ultrasound Report Generation using LangChain [58.07183284468881]
本稿では,Large Language Models (LLM) を用いたLangChainによる複数の画像解析ツールを胸部報告プロセスに統合することを提案する。
本手法は,超音波画像から関連する特徴を正確に抽出し,臨床的文脈で解釈し,包括的で標準化された報告を生成する。
論文 参考訳(メタデータ) (2023-12-05T00:28:26Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
ボリューム・スイープ・イメージング(VSI)は、訓練を受けていないオペレーターが高品質な超音波画像をキャプチャできる革新的な手法である。
本稿ではWavelet_Attention_UNet(WATUNet)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルでは、簡単な接続ではなく、ウェーブレットゲート(WG)とアテンションゲート(AG)をエンコーダとデコーダの間に組み込んで、上記の制限を克服する。
論文 参考訳(メタデータ) (2023-11-17T20:32:37Z) - TRUSformer: Improving Prostate Cancer Detection from Micro-Ultrasound
Using Attention and Self-Supervision [7.503600085603685]
本研究の目的は,複数スケールのROIスケールと生検コアスケールのアプローチによるがん検出の改善である。
我々のモデルはROIスケールのみのモデルと比較して一貫した、実質的なパフォーマンス改善を示している。
論文 参考訳(メタデータ) (2023-03-03T18:12:46Z) - Towards Confident Detection of Prostate Cancer using High Resolution
Micro-ultrasound [7.826781688190151]
経直腸超音波ガイド下生検における前立腺癌の診断は困難である。
マイクロ超音波による高周波超音波イメージングの最近の進歩は、高分解能で組織イメージングの能力を劇的に高めている。
本研究の目的は,マイクロ超音波ガイド下前立腺癌生検を対象とする,堅牢な深層学習モデルの開発である。
論文 参考訳(メタデータ) (2022-07-21T14:00:00Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
この課題には10,091個のパッチレベルのアノテーションと1300万以上のラベル付きピクセルが含まれる。
第一位チームは0.8413mIoUを達成した(腫瘍:0.8389、ストーマ:0.7931、正常:0.8919)。
論文 参考訳(メタデータ) (2022-04-13T15:27:05Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
本稿では,腫瘍セグメンテーションのトレーニングパラメータが最小限に抑えられたRCA-IUnetモデルについて紹介する。
RCA-IUnetモデルは、U-Netトポロジに従い、奥行きの深い分離可能な畳み込みとハイブリッドプール層を持つ。
無関係な特徴を抑え、対象構造に焦点を合わせるために、空間横断型アテンションフィルタが加えられる。
論文 参考訳(メタデータ) (2021-08-05T10:35:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。