Efficient Algorithm for Sparse Fourier Transform of Generalized $q$-ary Functions
- URL: http://arxiv.org/abs/2501.12365v2
- Date: Mon, 21 Apr 2025 00:23:46 GMT
- Title: Efficient Algorithm for Sparse Fourier Transform of Generalized $q$-ary Functions
- Authors: Darin Tsui, Kunal Talreja, Amirali Aghazadeh,
- Abstract summary: We develop GFast, a coding theoretic algorithm that computes the Fourier transform of $f$ with a sample complexity of $O(Sn)$.<n>GFast enables explaining real-world heart disease diagnosis and protein fitness models using up to $13times$ fewer samples.
- Score: 0.3004066195320147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computing the Fourier transform of a $q$-ary function $f:\mathbb{Z}_{q}^n\rightarrow \mathbb{R}$, which maps $q$-ary sequences to real numbers, is an important problem in mathematics with wide-ranging applications in biology, signal processing, and machine learning. Previous studies have shown that, under the sparsity assumption, the Fourier transform can be computed efficiently using fast and sample-efficient algorithms. However, in most practical settings, the function is defined over a more general space -- the space of generalized $q$-ary sequences $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2} \times \cdots \times \mathbb{Z}_{q_n}$ -- where each $\mathbb{Z}_{q_i}$ corresponds to integers modulo $q_i$. Herein, we develop GFast, a coding theoretic algorithm that computes the $S$-sparse Fourier transform of $f$ with a sample complexity of $O(Sn)$, computational complexity of $O(Sn \log N)$, and a failure probability that approaches zero as $N=\prod_{i=1}^n q_i \rightarrow \infty$ with $S = N^\delta$ for some $0 \leq \delta < 1$. We show that a noise-robust version of GFast computes the transform with a sample complexity of $O(Sn^2)$ and computational complexity of $O(Sn^2 \log N)$ under the same high probability guarantees. Additionally, we demonstrate that GFast computes the sparse Fourier transform of generalized $q$-ary functions $8\times$ faster using $16\times$ fewer samples on synthetic experiments, and enables explaining real-world heart disease diagnosis and protein fitness models using up to $13\times$ fewer samples compared to existing Fourier algorithms applied to the most efficient parameterization of the models as $q$-ary functions.
Related papers
- Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models [37.42736399673992]
A single-index model (SIM) is a function of the form $sigma(mathbfwast cdot mathbfx)$, where $sigma: mathbbR to mathbbR$ is a known link function and $mathbfwast$ is a hidden unit vector.
We show that a proper learner attains $L2$-error of $O(mathrmOPT)+epsilon$, where $
arXiv Detail & Related papers (2024-11-08T17:10:38Z) - Simple and Nearly-Optimal Sampling for Rank-1 Tensor Completion via Gauss-Jordan [49.1574468325115]
We revisit the sample and computational complexity of completing a rank-1 tensor in $otimes_i=1N mathbbRd$.
We present a characterization of the problem which admits an algorithm amounting to Gauss-Jordan on a pair of random linear systems.
arXiv Detail & Related papers (2024-08-10T04:26:19Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$<n>We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Efficiently Computing Sparse Fourier Transforms of $q$-ary Functions [12.522202946750157]
We develop a sparse Fourier transform algorithm specifically for $q$-ary functions of length $n$ sequences.
We show that for fixed $q$, a robust version of $q$-SFT has a sample complexity of $O(Sn2)$ and a computational complexity of $O(Sn3)$ with the same guarantees.
arXiv Detail & Related papers (2023-01-15T22:04:53Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Low-degree learning and the metric entropy of polynomials [44.99833362998488]
We prove that any (deterministic or randomized) algorithm which learns $mathscrF_nd$ with $L$-accuracy $varepsilon$ requires at least $Omega(sqrtvarepsilon)2dlog n leq log mathsfM(mathscrF_n,d,|cdot|_L,varepsilon) satisfies the two-sided estimate $$c (1-varepsilon)2dlog
arXiv Detail & Related papers (2022-03-17T23:52:08Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Convergence of Sparse Variational Inference in Gaussian Processes
Regression [29.636483122130027]
We show that a method with an overall computational cost of $mathcalO(log N)2D(loglog N)2)$ can be used to perform inference.
arXiv Detail & Related papers (2020-08-01T19:23:34Z) - Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation [30.137884459159107]
We consider the question of learning $Q$-function in a sample efficient manner for reinforcement learning with continuous state and action spaces.
We develop a simple, iterative learning algorithm that finds $epsilon$-Schmidt $Q$-function with sample complexity of $widetildeO(frac1epsilonmax(d1), d_2)+2)$ when the optimal $Q$-function has low rank $r$ and the factor $$ is below a certain threshold.
arXiv Detail & Related papers (2020-06-11T00:55:35Z) - A Randomized Algorithm to Reduce the Support of Discrete Measures [79.55586575988292]
Given a discrete probability measure supported on $N$ atoms and a set of $n$ real-valued functions, there exists a probability measure that is supported on a subset of $n+1$ of the original $N$ atoms.
We give a simple geometric characterization of barycenters via negative cones and derive a randomized algorithm that computes this new measure by "greedy geometric sampling"
We then study its properties, and benchmark it on synthetic and real-world data to show that it can be very beneficial in the $Ngg n$ regime.
arXiv Detail & Related papers (2020-06-02T16:38:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.