論文の概要: Learning segmentation from point trajectories
- arxiv url: http://arxiv.org/abs/2501.12392v1
- Date: Tue, 21 Jan 2025 18:59:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:26:15.295541
- Title: Learning segmentation from point trajectories
- Title(参考訳): 点軌跡からのセグメンテーションの学習
- Authors: Laurynas Karazija, Iro Laina, Christian Rupprecht, Andrea Vedaldi,
- Abstract要約: 本稿では,光フローを補完する監視信号として,長期的点軌跡を用いたセグメンテーションネットワークを訓練する方法を提案する。
本手法は,モーションベースセグメンテーションにおける先行技術より優れる。
- 参考スコア(独自算出の注目度): 79.02153797465326
- License:
- Abstract: We consider the problem of segmenting objects in videos based on their motion and no other forms of supervision. Prior work has often approached this problem by using the principle of common fate, namely the fact that the motion of points that belong to the same object is strongly correlated. However, most authors have only considered instantaneous motion from optical flow. In this work, we present a way to train a segmentation network using long-term point trajectories as a supervisory signal to complement optical flow. The key difficulty is that long-term motion, unlike instantaneous motion, is difficult to model -- any parametric approximation is unlikely to capture complex motion patterns over long periods of time. We instead draw inspiration from subspace clustering approaches, proposing a loss function that seeks to group the trajectories into low-rank matrices where the motion of object points can be approximately explained as a linear combination of other point tracks. Our method outperforms the prior art on motion-based segmentation, which shows the utility of long-term motion and the effectiveness of our formulation.
- Abstract(参考訳): 本研究は,映像中のオブジェクトのセグメント化に関する問題点について考察する。
先行研究はしばしば、共通の運命の原理、すなわち同じ対象に属する点の運動が強く相関しているという事実を用いてこの問題にアプローチしてきた。
しかし、ほとんどの著者は光の流れからの瞬間的な動きしか考えていない。
本研究では,光学的流れを補完する信号として,長期的点軌跡を用いたセグメンテーションネットワークを訓練する方法を提案する。
重要な困難は、瞬間的な動きとは異なり、長期的な動きはモデル化が難しいことである。パラメトリック近似は、長時間にわたって複雑な動きパターンを捉えることは不可能である。
代わりに、サブスペースクラスタリングのアプローチからインスピレーションを得て、軌道を低ランク行列に分類しようとする損失関数を提案し、そこでは対象点の運動を、他の点軌道の線形結合として概ね説明することができる。
本手法は, 動作に基づくセグメンテーションにおける先行技術よりも優れており, 長期動作の有用性と定式化の有効性を示す。
関連論文リスト
- Instantaneous Perception of Moving Objects in 3D [86.38144604783207]
周囲の交通参加者の3次元運動の認識は、運転安全に不可欠である。
本研究では,物体点雲の局所的な占有率の達成を利用して形状を密度化し,水泳人工物の影響を軽減することを提案する。
広汎な実験は、標準的な3次元運動推定手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-05T01:07:24Z) - Segmenting the motion components of a video: A long-term unsupervised model [5.801044612920816]
ビデオシーケンス上でのコヒーレントで安定した動作セグメンテーションを提供したいと思っています。
完全教師なし方式で動作する新しい長期光時間モデルを提案する。
4つのVOSに関する実験を報告し、競争力のある定量的結果を示した。
論文 参考訳(メタデータ) (2023-10-02T09:33:54Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
本研究では,短時間から長期間の軌跡を関連づける統合フレームワークで,堅牢な短期・長期動作を学習するMotionTrackを提案する。
密集した群集に対して,各ターゲットの複雑な動きを推定できる,短時間の軌跡から相互作用認識動作を学習するための新しい対話モジュールを設計する。
極端なオクルージョンのために、ターゲットの履歴軌跡から信頼できる長期動作を学習するための新しいRefind Moduleを構築し、中断された軌跡とそれに対応する検出とを関連付けることができる。
論文 参考訳(メタデータ) (2023-03-18T12:38:33Z) - ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving
Cameras in the Wild [57.37891682117178]
本稿では,一対の光流からの高密度対応に基づく動画の高密度間接構造抽出手法を提案する。
不規則点軌道データを処理するために,新しいニューラルネットワークアーキテクチャを提案する。
MPIシンテルデータセットを用いた実験により,我々のシステムはより正確なカメラ軌道を生成することがわかった。
論文 参考訳(メタデータ) (2022-07-19T09:19:45Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
本稿では,新しいビデオカモフラージュオブジェクト検出(VCOD)フレームワークを提案する。
短期的および長期的整合性を利用して、ビデオフレームからカモフラージュされたオブジェクトを検出する。
論文 参考訳(メタデータ) (2022-03-14T17:55:41Z) - FMODetect: Robust Detection and Trajectory Estimation of Fast Moving
Objects [110.29738581961955]
高速移動物体の検出と軌道推定のための最初の学習ベースアプローチを提案する。
提案手法は, 高速移動物体を軌道への切り離された距離関数として検出する。
シャープな外観推定のために,エネルギー最小化に基づくデブロワーリングを提案する。
論文 参考訳(メタデータ) (2020-12-15T11:05:34Z) - MAT: Motion-Aware Multi-Object Tracking [9.098793914779161]
本稿では,様々な物体の動作パターンに着目した動き認識トラッキング(MAT)を提案する。
MOT16とMOT17の挑戦的なベンチマークの実験は、我々のMATアプローチが大きなマージンで優れたパフォーマンスを達成することを実証している。
論文 参考訳(メタデータ) (2020-09-10T11:51:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。