論文の概要: Consolidating TinyML Lifecycle with Large Language Models: Reality, Illusion, or Opportunity?
- arxiv url: http://arxiv.org/abs/2501.12420v1
- Date: Mon, 20 Jan 2025 22:20:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:54:01.143039
- Title: Consolidating TinyML Lifecycle with Large Language Models: Reality, Illusion, or Opportunity?
- Title(参考訳): TinyMLライフサイクルを大規模言語モデルに統合する - 現実性、イリュージョン、オポチュニティ?
- Authors: Guanghan Wu, Sasu Tarkoma, Roberto Morabito,
- Abstract要約: 本稿では,Large Language Models(LLM)がTinyMLライフサイクルの自動化と合理化に有効かどうかを考察する。
我々は,自然言語処理(NLP)とLLMのコード生成機能を活用して開発時間を短縮し,TinyMLデプロイメントの参入障壁を低くするフレームワークを開発した。
- 参考スコア(独自算出の注目度): 3.1471494780647795
- License:
- Abstract: The evolving requirements of Internet of Things (IoT) applications are driving an increasing shift toward bringing intelligence to the edge, enabling real-time insights and decision-making within resource-constrained environments. Tiny Machine Learning (TinyML) has emerged as a key enabler of this evolution, facilitating the deployment of ML models on devices such as microcontrollers and embedded systems. However, the complexity of managing the TinyML lifecycle, including stages such as data processing, model optimization and conversion, and device deployment, presents significant challenges and often requires substantial human intervention. Motivated by these challenges, we began exploring whether Large Language Models (LLMs) could help automate and streamline the TinyML lifecycle. We developed a framework that leverages the natural language processing (NLP) and code generation capabilities of LLMs to reduce development time and lower the barriers to entry for TinyML deployment. Through a case study involving a computer vision classification model, we demonstrate the framework's ability to automate key stages of the TinyML lifecycle. Our findings suggest that LLM-powered automation holds potential for improving the lifecycle development process and adapting to diverse requirements. However, while this approach shows promise, there remain obstacles and limitations, particularly in achieving fully automated solutions. This paper sheds light on both the challenges and opportunities of integrating LLMs into TinyML workflows, providing insights into the path forward for efficient, AI-assisted embedded system development.
- Abstract(参考訳): IoT(Internet of Things)アプリケーションの進化する要件は、エッジにインテリジェンスを導入し、リソース制約のある環境におけるリアルタイムの洞察と意思決定を可能にするためのシフトを加速させている。
Tiny Machine Learning(TinyML)は、マイクロコントローラや組み込みシステムなどのデバイスへのMLモデルのデプロイを容易にする、この進化の重要な実現要因として登場した。
しかし、TinyMLライフサイクルの管理の複雑さは、データ処理、モデル最適化、変換、デバイスデプロイメントといったステージを含み、重大な課題を示し、多くの場合、人間の介入を必要とする。
これらの課題に触発されて、私たちは、TinyMLライフサイクルの自動化と合理化にLarge Language Models(LLMs)が役立つかどうかを探し始めました。
我々は,自然言語処理(NLP)とLLMのコード生成機能を活用して開発時間を短縮し,TinyMLデプロイメントの参入障壁を低くするフレームワークを開発した。
コンピュータビジョン分類モデルを含むケーススタディを通じて、TinyMLライフサイクルの重要なステージを自動化するフレームワークの能力を実証する。
この結果から,LCMによる自動化はライフサイクル開発プロセスの改善と多様な要件への適応の可能性が示唆された。
しかし、このアプローチは将来性を示しているが、特に完全に自動化されたソリューションを達成する上では、障害や制限が残っている。
この論文は、TinyMLワークフローにLLMを統合する際の課題と機会の両方に光を当て、効率的なAI支援組込みシステム開発に向けての道筋についての洞察を提供する。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - On-device Online Learning and Semantic Management of TinyML Systems [8.183732025472766]
本研究の目的は,単一TinyMLモデルのプロトタイピングと信頼性の高いTinyMLシステムの開発のギャップを埋めることである。
我々は,制約のあるデバイス上でのトレーニングを可能にするオンライン学習を提案し,最新のフィールド条件に局所モデルを適用する。
モデルとデバイスを大規模に管理するためのセマンティックマネジメントを提案する。
論文 参考訳(メタデータ) (2024-05-13T10:03:34Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - MLCopilot: Unleashing the Power of Large Language Models in Solving
Machine Learning Tasks [31.733088105662876]
我々は、新しいフレームワークを導入することで、機械学習と人間の知識のギャップを埋めることを目指している。
本稿では、構造化された入力を理解するためのLLMの能力を拡張し、新しいMLタスクを解くための徹底的な推論を行う可能性を示す。
論文 参考訳(メタデータ) (2023-04-28T17:03:57Z) - TinyML: Tools, Applications, Challenges, and Future Research Directions [2.9398911304923456]
TinyMLは、安価でリソースに制約のあるデバイス上でのMLアプリケーションを可能にする、組み込み機械学習技術である。
この記事では、TinyML実装で利用可能なさまざまな方法についてレビューする。
論文 参考訳(メタデータ) (2023-03-23T15:29:48Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - A review of TinyML [0.0]
TinyMLの組み込み機械学習の概念は、このような多様性を、通常のハイエンドアプローチからローエンドアプリケーションへと押し上げようとしている。
TinyMLは、機械学習、ソフトウェア、ハードウェアの統合において、急速に拡大する学際的なトピックである。
本稿では,TinyMLがいくつかの産業分野,その障害,その将来的な範囲にどのようなメリットをもたらすのかを考察する。
論文 参考訳(メタデータ) (2022-11-05T06:02:08Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
機械学習(ML)は、コンピュータシステムにまたがる普及したツールとなっている。
ティニー・ロボット・ラーニング(Tiny Robot Learning)とは、リソースに制約された低コストの自律ロボットにMLを配置する手法である。
小型ロボット学習は、サイズ、重量、面積、パワー(SWAP)の制約によって困難にさらされる。
本稿では,小型ロボットの学習空間を簡潔に調査し,重要な課題を詳述し,MLシステム設計における将来的な仕事の機会を提案する。
論文 参考訳(メタデータ) (2022-05-11T19:36:15Z) - Software Engineering Approaches for TinyML based IoT Embedded Vision: A
Systematic Literature Review [0.0]
IoT(Internet of Things)は、マシンラーニング(ML)と協力して、遠端に深いインテリジェンスを埋め込んでいる。
TinyML(Tiny Machine Learning)は、極めてリーンなエッジハードウェア上に、組み込みビジョンのためのMLモデルのデプロイを可能にする。
TinyMLをベースとする組み込みビジョンアプリケーションは、まだ初期段階にある。
論文 参考訳(メタデータ) (2022-04-19T07:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。