Tackling Small Sample Survival Analysis via Transfer Learning: A Study of Colorectal Cancer Prognosis
- URL: http://arxiv.org/abs/2501.12421v1
- Date: Tue, 21 Jan 2025 08:52:57 GMT
- Title: Tackling Small Sample Survival Analysis via Transfer Learning: A Study of Colorectal Cancer Prognosis
- Authors: Yonghao Zhao, Changtao Li, Chi Shu, Qingbin Wu, Hong Li, Chuan Xu, Tianrui Li, Ziqiang Wang, Zhipeng Luo, Yazhou He,
- Abstract summary: This study deals with small sample survival analysis by leveraging transfer learning.
We propose various transfer learning methods designed for common survival models.
All models trained with data as small as 50 demonstrated even more significant improvement.
- Score: 12.786824482430662
- License:
- Abstract: Survival prognosis is crucial for medical informatics. Practitioners often confront small-sized clinical data, especially cancer patient cases, which can be insufficient to induce useful patterns for survival predictions. This study deals with small sample survival analysis by leveraging transfer learning, a useful machine learning technique that can enhance the target analysis with related knowledge pre-learned from other data. We propose and develop various transfer learning methods designed for common survival models. For parametric models such as DeepSurv, Cox-CC (Cox-based neural networks), and DeepHit (end-to-end deep learning model), we apply standard transfer learning techniques like pretraining and fine-tuning. For non-parametric models such as Random Survival Forest, we propose a new transfer survival forest (TSF) model that transfers tree structures from source tasks and fine-tunes them with target data. We evaluated the transfer learning methods on colorectal cancer (CRC) prognosis. The source data are 27,379 SEER CRC stage I patients, and the target data are 728 CRC stage I patients from the West China Hospital. When enhanced by transfer learning, Cox-CC's $C^{td}$ value was boosted from 0.7868 to 0.8111, DeepHit's from 0.8085 to 0.8135, DeepSurv's from 0.7722 to 0.8043, and RSF's from 0.7940 to 0.8297 (the highest performance). All models trained with data as small as 50 demonstrated even more significant improvement. Conclusions: Therefore, the current survival models used for cancer prognosis can be enhanced and improved by properly designed transfer learning techniques. The source code used in this study is available at https://github.com/YonghaoZhao722/TSF.
Related papers
- Fast-staged CNN Model for Accurate pulmonary diseases and Lung cancer detection [0.0]
This research evaluates a deep learning model designed to detect lung cancer, specifically pulmonary nodules, along with eight other lung pathologies, using chest radiographs.
A two-stage classification system, utilizing ensemble methods and transfer learning, is employed to first triage images into Normal or Abnormal.
The model achieves notable results in classification, with a top-performing accuracy of 77%, a sensitivity of 0.713, a specificity of 0.776 during external validation, and an AUC score of 0.888.
arXiv Detail & Related papers (2024-12-16T11:47:07Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Survival modeling using deep learning, machine learning and statistical methods: A comparative analysis for predicting mortality after hospital admission [9.719996519981333]
We conducted a comparative study of several survival analysis methods, including Cox proportional hazards (CoxPH), stepwise CoxPH, elastic net penalized Cox model, and GBM learning.
As a case study, we performed a retrospective analysis of patients admitted through the emergency department of a tertiary hospital from 2017 to 2019.
The results of the C-index indicate that deep learning achieved comparable performance, with DeepSurv producing the best discrimination.
arXiv Detail & Related papers (2024-03-04T10:46:02Z) - Enhanced Mortality Prediction In Patients With Subarachnoid Haemorrhage
Using A Deep Learning Model Based On The Initial CT Scan [34.86503928854081]
Convolutional neural networks (CNN) are capable of generating highly accurate predictions from imaging data.
Our objective was to predict mortality in Subarachnoid hemorrhage patients by processing the initial CT scan on a CNN based algorithm.
arXiv Detail & Related papers (2023-08-25T13:33:56Z) - Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
Renal cell carcinoma represents a significant global health challenge with a low survival rate.
This research aimed to devise a comprehensive deep-learning model capable of predicting survival probabilities in patients with renal cell carcinoma.
The proposed framework comprises three modules: a 3D image feature extractor, clinical variable selection, and survival prediction.
arXiv Detail & Related papers (2023-07-07T13:09:07Z) - Supervised Machine Learning for Breast Cancer Risk Factors Analysis and
Survival Prediction [0.5249805590164902]
The choice of the most effective treatment may eventually be influenced by breast cancer survival prediction.
In this study, 1904 patient records were utilized to predict a 5-year breast cancer survival using a machine learning approach.
arXiv Detail & Related papers (2023-04-13T12:32:14Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Learning Clinical Concepts for Predicting Risk of Progression to Severe
COVID-19 [17.781861866125023]
Using data from a major healthcare provider, we develop survival models predicting severe COVID-19 progression.
We develop two sets of high-performance risk scores: (i) an unconstrained model built from all available features; and (ii) a pipeline that learns a small set of clinical concepts before training a risk predictor.
arXiv Detail & Related papers (2022-08-28T02:59:35Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
We develop various AI models to predict hospitalization on a large (over 110$k$) cohort of COVID-19 positive-tested US patients.
Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and $F_score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class.
arXiv Detail & Related papers (2021-10-28T10:23:38Z) - CAE-Transformer: Transformer-based Model to Predict Invasiveness of Lung
Adenocarcinoma Subsolid Nodules from Non-thin Section 3D CT Scans [36.093580055848186]
Lung Adenocarcinoma (LAUC) has recently been the most prevalent.
Timely and accurate knowledge of the invasiveness of lung nodules leads to a proper treatment plan and reduces the risk of unnecessary or late surgeries.
The primary imaging modality to assess and predict the invasiveness of LAUCs is the chest CT.
In this paper, a predictive transformer-based framework, referred to as the "CAE-Transformer", is developed to classify LAUCs.
arXiv Detail & Related papers (2021-10-17T04:37:24Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.