Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis
- URL: http://arxiv.org/abs/2207.11581v2
- Date: Sun, 10 Sep 2023 22:45:59 GMT
- Title: Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis
- Authors: Gregory Holste, Evangelos K. Oikonomou, Bobak J. Mortazavi, Zhangyang
Wang, Rohan Khera
- Abstract summary: We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
- Score: 48.64462717254158
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advances in self-supervised learning (SSL) have shown that self-supervised
pretraining on medical imaging data can provide a strong initialization for
downstream supervised classification and segmentation. Given the difficulty of
obtaining expert labels for medical image recognition tasks, such an
"in-domain" SSL initialization is often desirable due to its improved label
efficiency over standard transfer learning. However, most efforts toward SSL of
medical imaging data are not adapted to video-based medical imaging modalities.
With this progress in mind, we developed a self-supervised contrastive learning
approach, EchoCLR, catered to echocardiogram videos with the goal of learning
strong representations for efficient fine-tuning on downstream cardiac disease
diagnosis. EchoCLR leverages (i) distinct videos of the same patient as
positive pairs for contrastive learning and (ii) a frame re-ordering pretext
task to enforce temporal coherence. When fine-tuned on small portions of
labeled data (as few as 51 exams), EchoCLR pretraining significantly improved
classification performance for left ventricular hypertrophy (LVH) and aortic
stenosis (AS) over other transfer learning and SSL approaches across internal
and external test sets. For example, when fine-tuning on 10% of available
training data (519 studies), an EchoCLR-pretrained model achieved 0.72 AUROC
(95% CI: [0.69, 0.75]) on LVH classification, compared to 0.61 AUROC (95% CI:
[0.57, 0.64]) with a standard transfer learning approach. Similarly, using 1%
of available training data (53 studies), EchoCLR pretraining achieved 0.82
AUROC (95% CI: [0.79, 0.84]) on severe AS classification, compared to 0.61
AUROC (95% CI: [0.58, 0.65]) with transfer learning. EchoCLR is unique in its
ability to learn representations of medical videos and demonstrates that SSL
can enable label-efficient disease classification from small, labeled datasets.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement [10.611952462532908]
Multimodal ECG Representation Learning (MERL) is capable of performing zero-shot ECG classification with text prompts.
We propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach to exploit external expert-verified clinical knowledge databases.
MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10% annotated training data, averaged across all six datasets.
arXiv Detail & Related papers (2024-03-11T12:28:55Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD
classification directly from H&E whole-slide images in colorectal and breast
cancer [22.46523830554047]
We propose a Deep learning-based weak label learning method for analyzing whole slide images (WSIs) of Hematoxylin and Eosin stained tumor tissue.
We apply DeepSMILE to the task of Homologous recombination deficiency (HRD) and microsatellite instability (MSI) prediction.
arXiv Detail & Related papers (2021-07-20T11:00:16Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Intra-Domain Task-Adaptive Transfer Learning to Determine Acute Ischemic
Stroke Onset Time [7.024121839235693]
Treatment of acute ischemic strokes (AIS) is largely contingent upon the time since stroke onset (TSS)
Current clinical guidelines for patients with unknown TSS recommend the use of MRI to determine eligibility for thrombolysis, but radiology assessments have high inter-reader variability.
We present deep learning models that leverage MRI diffusion series to classify TSS based on clinically validated thresholds.
arXiv Detail & Related papers (2020-11-05T18:28:54Z) - A Machine Learning Early Warning System: Multicenter Validation in
Brazilian Hospitals [4.659599449441919]
Early recognition of clinical deterioration is one of the main steps for reducing inpatient morbidity and mortality.
Since hospital wards are given less attention compared to the Intensive Care Unit, ICU, we hypothesized that when a platform is connected to a stream of EHR, there would be a drastic improvement in dangerous situations awareness.
With the application of machine learning, the system is capable to consider all patient's history and through the use of high-performing predictive models, an intelligent early warning system is enabled.
arXiv Detail & Related papers (2020-06-09T21:21:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.