SafePowerGraph-HIL: Real-Time HIL Validation of Heterogeneous GNNs for Bridging Sim-to-Real Gap in Power Grids
- URL: http://arxiv.org/abs/2501.12427v1
- Date: Tue, 21 Jan 2025 13:36:38 GMT
- Title: SafePowerGraph-HIL: Real-Time HIL Validation of Heterogeneous GNNs for Bridging Sim-to-Real Gap in Power Grids
- Authors: Aoxiang Ma, Salah Ghamizi, Jun Cao, Pedro Rodriguez,
- Abstract summary: We develop a SafePowerGraph-HIL framework that utilizes HIL simulations on the IEEE 9-bus system, modeled in Hypersim.
By leveraging Hypersim's capabilities, we simulate complex grid interactions, providing a robust dataset that captures critical parameters for HGNN training.
The trained HGNN is subsequently validated using newly generated data under varied system conditions, demonstrating accuracy and robustness in predicting power system states.
- Score: 6.788629099241222
- License:
- Abstract: As machine learning (ML) techniques gain prominence in power system research, validating these methods' effectiveness under real-world conditions requires real-time hardware-in-the-loop (HIL) simulations. HIL simulation platforms enable the integration of computational models with physical devices, allowing rigorous testing across diverse scenarios critical to system resilience and reliability. In this study, we develop a SafePowerGraph-HIL framework that utilizes HIL simulations on the IEEE 9-bus system, modeled in Hypersim, to generate high-fidelity data, which is then transmitted in real-time via SCADA to an AWS cloud database before being input into a Heterogeneous Graph Neural Network (HGNN) model designed for power system state estimation and dynamic analysis. By leveraging Hypersim's capabilities, we simulate complex grid interactions, providing a robust dataset that captures critical parameters for HGNN training. The trained HGNN is subsequently validated using newly generated data under varied system conditions, demonstrating accuracy and robustness in predicting power system states. The results underscore the potential of integrating HIL with advanced neural network architectures to enhance the real-time operational capabilities of power systems. This approach represents a significant advancement toward the development of intelligent, adaptive control strategies that support the robustness and resilience of evolving power grids.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.
We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework to address this problem.
HTGNN explicitly models signals from diverse sensors and integrates operating conditions into the model architecture.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for Graph Neural Networks (GNNs) in power systems (PS) operations.
SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages.
arXiv Detail & Related papers (2024-07-17T09:01:38Z) - Applying generative neural networks for fast simulations of the ALICE (CERN) experiment [0.0]
This thesis investigates the application of state-of-the-art advances in generative neural networks for fast simulation of the Zero Degree Calorimeter (ZDC) neutron detector at CERN.
Traditional simulation methods using the GEANT Monte Carlo toolkit, while accurate, are computationally demanding.
The thesis provides a comprehensive literature review on the application of neural networks in computer vision, fast simulations using machine learning, and generative neural networks in high-energy physics.
arXiv Detail & Related papers (2024-07-10T17:08:59Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - Grid Monitoring with Synchro-Waveform and AI Foundation Model Technologies [41.994460245857404]
This article advocates for the development of a next-generation grid monitoring and control system designed for future grids dominated by inverter-based resources.
We develop a physics-based AI foundation model with high-resolution synchro-waveform measurement technology to enhance grid resilience and reduce economic losses from outages.
arXiv Detail & Related papers (2024-03-11T17:28:46Z) - Smart Home Energy Management: VAE-GAN synthetic dataset generator and
Q-learning [15.995891934245334]
We propose a novel variational auto-encoder-generative adversarial network (VAE-GAN) technique for generating time-series data on energy consumption in smart homes.
We tested the online performance of Q-learning-based HEMS with real-world smart home data.
arXiv Detail & Related papers (2023-05-14T22:22:16Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
arXiv Detail & Related papers (2022-11-14T01:29:09Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.