Divide-Then-Aggregate: An Efficient Tool Learning Method via Parallel Tool Invocation
- URL: http://arxiv.org/abs/2501.12432v1
- Date: Tue, 21 Jan 2025 16:49:08 GMT
- Title: Divide-Then-Aggregate: An Efficient Tool Learning Method via Parallel Tool Invocation
- Authors: Dongsheng Zhu, Weixian Shi, Zhengliang Shi, Zhaochun Ren, Shuaiqiang Wang, Lingyong Yan, Dawei Yin,
- Abstract summary: We introduce a novel parallel tool invocation paradigm, DTA-Llama.
First, we transform traditional tree-based tool search paths into Directed Acyclic Graph (DAG) structure.
The DTA-Llama is then trained on the dataset to learn to iteratively divide the current task into several parallel tool invocation sub-tasks.
- Score: 36.29566268457534
- License:
- Abstract: Although current Large Language Models (LLMs) exhibit impressive capabilities, performing complex real-world tasks still requires tool learning. Mainstream methods, such as CoT/ReAct, rely on step-by-step tool invocation to interact with external environments, but they are limited in perceptual scope and lack adequate task-planning capability. To address these limitations, other studies introduce the first Search-based Decision Tree (DFSDT), which still suffers from the high computational cost. In this paper, we introduce a novel parallel tool invocation paradigm, DTA-Llama (Divide-Then-Aggregate Llama). First, we transform traditional tree-based tool search paths into Directed Acyclic Graph (DAG) structure, generating a high-quality parallel tool invocation dataset. The DTA-Llama is then trained on the dataset to learn to iteratively divide the current task into several parallel tool invocation sub-tasks and aggregate the invocation results to decide the next actions. Furthermore, we introduce an efficient inference framework inspired by the Process/Threads mechanism when applying the DTA-Llama to practical tasks. Experimental results show that our approach substantially enhances task performance while reducing token consumption and inference time. Llama2-7B, using our method, is comparable to the official parallel function calling method of GPT-3.5. The relevant code, dataset, and model weights are available at https://corn0205.github.io/
Related papers
- Efficient and Scalable Estimation of Tool Representations in Vector Space [34.767193045989515]
We present a framework for generating synthetic data for tool retrieval applications and an efficient data-driven tool retrieval strategy using small encoder models.
We create ToolBank, a new tool retrieval dataset that reflects real human user usages.
With these new methods, we achieve improvements of up to 27.28 in Recall@K on the ToolBench dataset and 30.5 in Recall@K on ToolBank.
arXiv Detail & Related papers (2024-09-02T19:39:24Z) - Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees [37.297431187924765]
We propose an inference trajectory optimization framework based on the preference data extracted from decision trees.
Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines.
arXiv Detail & Related papers (2024-06-11T10:00:18Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - From Summary to Action: Enhancing Large Language Models for Complex
Tasks with Open World APIs [62.496139001509114]
We introduce a novel tool invocation pipeline designed to control massive real-world APIs.
This pipeline mirrors the human task-solving process, addressing complicated real-life user queries.
Empirical evaluations of our Sum2Act pipeline on the ToolBench benchmark show significant performance improvements.
arXiv Detail & Related papers (2024-02-28T08:42:23Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [63.08202389132155]
Large language models (LLMs) need to ground their reasoning to real-world knowledge.
There remains challenges for fine-tuning LLM agents to invoke tools in multi-step reasoning problems.
We propose a new method for LLMs to better leverage tools in multi-step reasoning.
arXiv Detail & Related papers (2024-01-30T21:53:30Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.