Efficient Tool Use with Chain-of-Abstraction Reasoning
- URL: http://arxiv.org/abs/2401.17464v3
- Date: Wed, 08 Jan 2025 16:27:29 GMT
- Title: Efficient Tool Use with Chain-of-Abstraction Reasoning
- Authors: Silin Gao, Jane Dwivedi-Yu, Ping Yu, Xiaoqing Ellen Tan, Ramakanth Pasunuru, Olga Golovneva, Koustuv Sinha, Asli Celikyilmaz, Antoine Bosselut, Tianlu Wang,
- Abstract summary: Large language models (LLMs) need to ground their reasoning to real-world knowledge.
There remains challenges for fine-tuning LLM agents to invoke tools in multi-step reasoning problems.
We propose a new method for LLMs to better leverage tools in multi-step reasoning.
- Score: 63.08202389132155
- License:
- Abstract: To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.
Related papers
- Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.
MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.
Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Self-Training Large Language Models for Tool-Use Without Demonstrations [15.17750971071501]
Large language models (LLMs) remain prone to factual inaccuracies and computational errors.
Recent work augmented LLMs with tools to mitigate these shortcomings, but often requires curated gold tool-use demonstrations.
This paper investigates whether LLMs can learn to use tools without demonstrations.
arXiv Detail & Related papers (2025-02-09T12:06:10Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
Existing large language models (LLMs) only reach a correctness rate in the range of 30% to 60%.
We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE)
STE orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory.
arXiv Detail & Related papers (2024-03-07T18:50:51Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - From Good to Great: Improving Math Reasoning with Tool-Augmented
Interleaf Prompting [45.77084082197953]
IMP-TIP: Improving Math Reasoning with Tool-augmented Interleaf Prompting.
We introduce IMP-TIP: Improving Math Reasoning with Tool-augmented Interleaf Prompting.
arXiv Detail & Related papers (2023-12-18T06:31:23Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
Large Language Models (LLMs) have made significant progress in utilizing tools, but their ability is limited by API availability.
We propose CREATOR, a novel framework that enables LLMs to create their own tools using documentation and code realization.
We evaluate CREATOR on MATH and TabMWP benchmarks, respectively consisting of challenging math competition problems.
arXiv Detail & Related papers (2023-05-23T17:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.