Generalization Performance of Hypergraph Neural Networks
- URL: http://arxiv.org/abs/2501.12554v2
- Date: Fri, 24 Jan 2025 19:57:02 GMT
- Title: Generalization Performance of Hypergraph Neural Networks
- Authors: Yifan Wang, Gonzalo R. Arce, Guangmo Tong,
- Abstract summary: We develop margin-based generalization bounds for four representative classes of hypergraph neural networks.
Our results reveal the manner in which hypergraph structure and spectral norms of the learned weights can affect the generalization bounds.
Our empirical study examines the relationship between the practical performance and theoretical bounds of the models over synthetic and real-world datasets.
- Score: 21.483543928698676
- License:
- Abstract: Hypergraph neural networks have been promising tools for handling learning tasks involving higher-order data, with notable applications in web graphs, such as modeling multi-way hyperlink structures and complex user interactions. Yet, their generalization abilities in theory are less clear to us. In this paper, we seek to develop margin-based generalization bounds for four representative classes of hypergraph neural networks, including convolutional-based methods (UniGCN), set-based aggregation (AllDeepSets), invariant and equivariant transformations (M-IGN), and tensor-based approaches (T-MPHN). Through the PAC-Bayes framework, our results reveal the manner in which hypergraph structure and spectral norms of the learned weights can affect the generalization bounds, where the key technical challenge lies in developing new perturbation analysis for hypergraph neural networks, which offers a rigorous understanding of how variations in the model's weights and hypergraph structure impact its generalization behavior. Our empirical study examines the relationship between the practical performance and theoretical bounds of the models over synthetic and real-world datasets. One of our primary observations is the strong correlation between the theoretical bounds and empirical loss, with statistically significant consistency in most cases.
Related papers
- What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
Graph Transformers, which incorporate self-attention and positional encoding, have emerged as a powerful architecture for various graph learning tasks.
This paper introduces first theoretical investigation of a shallow Graph Transformer for semi-supervised classification.
arXiv Detail & Related papers (2024-06-04T05:30:16Z) - Gaussian Universality in Neural Network Dynamics with Generalized Structured Input Distributions [2.3020018305241337]
We analyze the behavior of a deep learning system trained on inputs modeled as Gaussian mixtures to better simulate more general structured inputs.
Under certain standardization schemes, the deep learning model converges toward Gaussian setting behavior, even when the input data follow more complex or real-world distributions.
arXiv Detail & Related papers (2024-05-01T17:10:55Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
This extended abstract describes a framework for analyzing the expressiveness, learning, and (structural) generalization of hypergraph neural networks (HyperGNNs)
Specifically, we focus on how HyperGNNs can learn from finite datasets and generalize structurally to graph reasoning problems of arbitrary input sizes.
arXiv Detail & Related papers (2023-03-09T18:42:18Z) - Homophily modulates double descent generalization in graph convolution
networks [33.703222768801574]
We show how risk is shaped by the interplay between the graph noise, feature noise, and the number of training labels.
We use our analytic insights to improve performance of state-of-the-art graph convolution networks on heterophilic datasets.
arXiv Detail & Related papers (2022-12-26T09:57:09Z) - Generalization Guarantee of Training Graph Convolutional Networks with
Graph Topology Sampling [83.77955213766896]
Graph convolutional networks (GCNs) have recently achieved great empirical success in learning graphstructured data.
To address its scalability issue, graph topology sampling has been proposed to reduce the memory and computational cost of training Gs.
This paper provides first theoretical justification of graph topology sampling in training (up to) three-layer GCNs.
arXiv Detail & Related papers (2022-07-07T21:25:55Z) - Predicting the generalization gap in neural networks using topological
data analysis [33.511371257571504]
We study the generalization gap of neural networks using methods from topological data analysis.
We compute homological persistence diagrams of weighted graphs constructed from neuron activation correlations after a training phase.
We compare the usefulness of different numerical summaries from persistence diagrams and show that a combination of some of them can accurately predict and partially explain the generalization gap without the need of a test set.
arXiv Detail & Related papers (2022-03-23T11:15:36Z) - With Greater Distance Comes Worse Performance: On the Perspective of
Layer Utilization and Model Generalization [3.6321778403619285]
Generalization of deep neural networks remains one of the main open problems in machine learning.
Early layers generally learn representations relevant to performance on both training data and testing data.
Deeper layers only minimize training risks and fail to generalize well with testing or mislabeled data.
arXiv Detail & Related papers (2022-01-28T05:26:32Z) - Formalizing Generalization and Robustness of Neural Networks to Weight
Perturbations [58.731070632586594]
We provide the first formal analysis for feed-forward neural networks with non-negative monotone activation functions against weight perturbations.
We also design a new theory-driven loss function for training generalizable and robust neural networks against weight perturbations.
arXiv Detail & Related papers (2021-03-03T06:17:03Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
We advance the understanding of the relations between the network's architecture and its generalizability from the compression perspective.
We propose a series of intuitive, data-dependent and easily-measurable properties that tightly characterize the compressibility and generalizability of neural networks.
arXiv Detail & Related papers (2020-01-14T22:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.