論文の概要: T2ISafety: Benchmark for Assessing Fairness, Toxicity, and Privacy in Image Generation
- arxiv url: http://arxiv.org/abs/2501.12612v1
- Date: Wed, 22 Jan 2025 03:29:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:01.220750
- Title: T2ISafety: Benchmark for Assessing Fairness, Toxicity, and Privacy in Image Generation
- Title(参考訳): T2ISafety:画像生成における公正性、毒性、プライバシを評価するベンチマーク
- Authors: Lijun Li, Zhelun Shi, Xuhao Hu, Bowen Dong, Yiran Qin, Xihui Liu, Lu Sheng, Jing Shao,
- Abstract要約: T2ISafetyは、毒性、公正性、バイアスという3つの主要な領域にわたるT2Iモデルを評価する安全ベンチマークである。
我々は68Kの注釈付き画像を用いた大規模T2Iデータセットを構築し、臨界リスクを検出するための評価器を訓練する。
我々は、T2ISafety上での12の顕著な拡散モデルを評価し、人種的公正性に関する永続的な問題、有害なコンテンツを生成する傾向、モデル間でのプライバシー保護の顕著なばらつきなど、いくつかの懸念を明らかにした。
- 参考スコア(独自算出の注目度): 39.45602029655288
- License:
- Abstract: Text-to-image (T2I) models have rapidly advanced, enabling the generation of high-quality images from text prompts across various domains. However, these models present notable safety concerns, including the risk of generating harmful, biased, or private content. Current research on assessing T2I safety remains in its early stages. While some efforts have been made to evaluate models on specific safety dimensions, many critical risks remain unexplored. To address this gap, we introduce T2ISafety, a safety benchmark that evaluates T2I models across three key domains: toxicity, fairness, and bias. We build a detailed hierarchy of 12 tasks and 44 categories based on these three domains, and meticulously collect 70K corresponding prompts. Based on this taxonomy and prompt set, we build a large-scale T2I dataset with 68K manually annotated images and train an evaluator capable of detecting critical risks that previous work has failed to identify, including risks that even ultra-large proprietary models like GPTs cannot correctly detect. We evaluate 12 prominent diffusion models on T2ISafety and reveal several concerns including persistent issues with racial fairness, a tendency to generate toxic content, and significant variation in privacy protection across the models, even with defense methods like concept erasing. Data and evaluator are released under https://github.com/adwardlee/t2i_safety.
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)モデルは急速に進歩し、様々な領域にわたるテキスト・プロンプトから高品質な画像を生成することができる。
しかし、これらのモデルには、有害、偏り、またはプライベートなコンテンツを生成するリスクを含む、顕著な安全上の懸念がある。
T2Iの安全性評価に関する現在の研究は、まだ初期段階にある。
特定の安全次元のモデルを評価するためにいくつかの試みがなされているが、多くの重大なリスクは未調査のままである。
このギャップに対処するために、毒性、公正性、バイアスという3つの主要な領域にわたるT2Iモデルを評価する安全ベンチマークであるT2ISafetyを紹介します。
これら3つのドメインに基づいて、12のタスクと44のカテゴリの詳細な階層を構築し、70K対応のプロンプトを慎重に収集する。
この分類とプロンプトセットに基づいて、68Kの画像を手動でアノテートした大規模T2Iデータセットを構築し、GPTのような超大型のプロプライエタリモデルでも正しく検出できないリスクを含む、前回の作業で特定できなかった重大なリスクを検出することができる評価器を訓練する。
我々は、T2ISafety上での12の顕著な拡散モデルを評価し、人種的公正性に関する永続的な問題、有害なコンテンツを生成する傾向、概念消去のような防衛方法であっても、モデル間でのプライバシー保護の顕著なばらつきなど、いくつかの懸念を明らかにした。
データと評価器はhttps://github.com/adwardlee/t2i_safetyでリリースされる。
関連論文リスト
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - ShieldDiff: Suppressing Sexual Content Generation from Diffusion Models through Reinforcement Learning [7.099258248662009]
テキスト・ツー・イメージ(T2I)モデルは、不快な内容の安全でない画像を生成する可能性がある。
我々の研究では、T2IモデルからNSFW(職場では安全ではない)コンテンツ生成を排除することに重点を置いています。
本稿では,CLIP(Contrastive Language- Image Pre-Trening)とヌード報酬(nudity rewards)から構成される独自の報酬関数を提案する。
論文 参考訳(メタデータ) (2024-10-04T19:37:56Z) - Multimodal Pragmatic Jailbreak on Text-to-image Models [43.67831238116829]
この研究は、新しいタイプのjailbreakを導入し、T2Iモデルをトリガーして、ビジュアルテキストで画像を生成する。
2つのオープンソース商用モデルを含む9つの代表的なT2Iモデルをベンチマークする。
テストされたすべてのモデルはこの種のジェイルブレイクに悩まされており、安全でない世代の割合は8%から74%である。
論文 参考訳(メタデータ) (2024-09-27T21:23:46Z) - Direct Unlearning Optimization for Robust and Safe Text-to-Image Models [29.866192834825572]
モデルが潜在的に有害なコンテンツを生成する能力を取り除くために、未学習の技術が開発されている。
これらの手法は敵の攻撃によって容易に回避され、生成した画像の安全性を確保するには信頼性が低い。
T2IモデルからNot Safe For Work(NSFW)コンテンツを除去するための新しいフレームワークであるDirect Unlearning Optimization (DUO)を提案する。
論文 参考訳(メタデータ) (2024-07-17T08:19:11Z) - Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models [58.74606272936636]
テキスト・ツー・イメージ(T2I)拡散モデルは、テキスト・プロンプトと密接に対応した画像を生成する際、例外的な機能を示す。
モデルは、暴力やヌードの画像を生成したり、不適切な文脈で公共の人物の無許可の肖像画を作成するなど、悪意ある目的のために利用することができる。
悪質な概念や望ましくない概念の発生を防ぐために拡散モデルを変更する概念除去法が提案されている。
論文 参考訳(メタデータ) (2024-06-21T03:58:44Z) - PhyBench: A Physical Commonsense Benchmark for Evaluating Text-to-Image Models [50.33699462106502]
テキスト・トゥ・イメージ(T2I)モデルは、物理コモンセンスと整合した画像を生成するのにしばしば失敗する。
現在のT2I評価ベンチマークは、精度、バイアス、安全性などの指標に焦点を当て、モデルの内部知識の評価を無視している。
メカニクス,光学,熱力学,材料特性の4つのカテゴリに700のプロンプトを含む総合的なT2I評価データセットであるPhyBenchを紹介する。
論文 参考訳(メタデータ) (2024-06-17T17:49:01Z) - Position: Towards Implicit Prompt For Text-To-Image Models [57.00716011456852]
本稿では,テキスト・トゥ・イメージ(T2I)モデルの現状を暗黙のプロンプトに向けて強調する。
我々は、ImplicitBenchというベンチマークを示し、暗黙のプロンプトのパフォーマンスと影響について調査する。
実験結果から,T2Iモデルは暗黙のプロンプトで示される様々なターゲットシンボルを正確に生成できることがわかった。
論文 参考訳(メタデータ) (2024-03-04T15:21:51Z) - Adversarial Nibbler: An Open Red-Teaming Method for Identifying Diverse Harms in Text-to-Image Generation [19.06501699814924]
私たちは、暗黙的に敵対的なプロンプトをクラウドソーシングするための、レッドチーム方式であるAdversarial Nibbler Challengeを構築します。
この課題は、T2Iモデルにおける安全落とし穴の持続的な発見と分析を可能にするために、連続的なラウンドで実行される。
人類が有害とみなす画像の14%は、機械によって「安全」と誤記されている。
論文 参考訳(メタデータ) (2024-02-14T22:21:12Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z) - Adversarial Nibbler: A Data-Centric Challenge for Improving the Safety
of Text-to-Image Models [6.475537049815622]
Adversarial Nibblerはデータ中心のチャレンジであり、DataPerfチャレンジスイートの一部として、KaggleとMLCommonsが組織し、サポートしている。
論文 参考訳(メタデータ) (2023-05-22T15:02:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。