Manifold learning and optimization using tangent space proxies
- URL: http://arxiv.org/abs/2501.12678v1
- Date: Wed, 22 Jan 2025 06:42:12 GMT
- Title: Manifold learning and optimization using tangent space proxies
- Authors: Ryan A. Robinett, Lorenzo Orecchia, Samantha J. Riesenfeld,
- Abstract summary: We present a framework for efficiently approximating differential-geometric primitives on arbitrary manifold.
We first show the utility of this framework in a setting where the manifold is expressed in closed form.
Using point cloud data for which a complex manifold structure was previously established, we show that an atlas graph with the correct geometry can be directly learned from the point cloud.
- Score: 1.7068557927955381
- License:
- Abstract: We present a framework for efficiently approximating differential-geometric primitives on arbitrary manifolds via construction of an atlas graph representation, which leverages the canonical characterization of a manifold as a finite collection, or atlas, of overlapping coordinate charts. We first show the utility of this framework in a setting where the manifold is expressed in closed form, specifically, a runtime advantage, compared with state-of-the-art approaches, for first-order optimization over the Grassmann manifold. Moreover, using point cloud data for which a complex manifold structure was previously established, i.e., high-contrast image patches, we show that an atlas graph with the correct geometry can be directly learned from the point cloud. Finally, we demonstrate that learning an atlas graph enables downstream key machine learning tasks. In particular, we implement a Riemannian generalization of support vector machines that uses the learned atlas graph to approximate complex differential-geometric primitives, including Riemannian logarithms and vector transports. These settings suggest the potential of this framework for even more complex settings, where ambient dimension and noise levels may be much higher.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity
Priors [52.646396621449]
G-MSM is a novel unsupervised learning approach for non-rigid shape correspondence.
We construct an affinity graph on a given set of training shapes in a self-supervised manner.
We demonstrate state-of-the-art performance on several recent shape correspondence benchmarks.
arXiv Detail & Related papers (2022-12-06T12:09:24Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Directed Graph Embeddings in Pseudo-Riemannian Manifolds [0.0]
We show that general directed graphs can be effectively represented by an embedding model that combines three components.
We demonstrate the representational capabilities of this method by applying it to the task of link prediction.
arXiv Detail & Related papers (2021-06-16T10:31:37Z) - Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach [7.752212921476838]
We propose the systematic use of symmetric spaces in representation learning, a class encompassing many of the previously used embedding targets.
We develop a tool to analyze the embeddings and infer structural properties of the data sets.
Our approach outperforms competitive baselines for graph reconstruction tasks on various synthetic and real-world datasets.
arXiv Detail & Related papers (2021-06-09T09:33:33Z) - Hermitian Symmetric Spaces for Graph Embeddings [0.0]
We learn continuous representations of graphs in spaces of symmetric matrices over C.
These spaces offer a rich geometry that simultaneously admits hyperbolic and Euclidean subspaces.
The proposed models are able to automatically adapt to very dissimilar arrangements without any apriori estimates of graph features.
arXiv Detail & Related papers (2021-05-11T18:14:52Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
We apply graph convolution into the semantic segmentation task and propose an improved Laplacian.
The graph reasoning is directly performed in the original feature space organized as a spatial pyramid.
We achieve comparable performance with advantages in computational and memory overhead.
arXiv Detail & Related papers (2020-03-23T12:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.