論文の概要: REX: Causal Discovery based on Machine Learning and Explainability techniques
- arxiv url: http://arxiv.org/abs/2501.12706v1
- Date: Wed, 22 Jan 2025 08:23:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:02.940401
- Title: REX: Causal Discovery based on Machine Learning and Explainability techniques
- Title(参考訳): REX: 機械学習と説明可能性技術に基づく因果発見
- Authors: Jesus Renero, Idoia Ochoa, Roberto Maestre,
- Abstract要約: 本稿では、機械学習(ML)モデルと説明可能性技術、特にShapley値を組み合わせた因果発見手法であるREXを紹介する。
REXは、非線形および付加的なノイズモデルを含む様々なデータ生成プロセスにおいて、最先端の因果発見手法より優れている。
REXは予測モデリングと因果推論のギャップを埋め、複雑な因果構造を理解する効果的なツールを提供する。
- 参考スコア(独自算出の注目度): 0.13108652488669734
- License:
- Abstract: Explainability techniques hold significant potential for enhancing the causal discovery process, which is crucial for understanding complex systems in areas like healthcare, economics, and artificial intelligence. However, no causal discovery methods currently incorporate explainability into their models to derive causal graphs. Thus, in this paper we explore this innovative approach, as it offers substantial potential and represents a promising new direction worth investigating. Specifically, we introduce REX, a causal discovery method that leverages machine learning (ML) models coupled with explainability techniques, specifically Shapley values, to identify and interpret significant causal relationships among variables. Comparative evaluations on synthetic datasets comprising continuous tabular data reveal that REX outperforms state-of-the-art causal discovery methods across diverse data generation processes, including non-linear and additive noise models. Moreover, REX was tested on the Sachs single-cell protein-signaling dataset, achieving a precision of 0.952 and recovering key causal relationships with no incorrect edges. Taking together, these results showcase REX's effectiveness in accurately recovering true causal structures while minimizing false positive predictions, its robustness across diverse datasets, and its applicability to real-world problems. By combining ML and explainability techniques with causal discovery, REX bridges the gap between predictive modeling and causal inference, offering an effective tool for understanding complex causal structures. REX is publicly available at https://github.com/renero/causalgraph.
- Abstract(参考訳): 説明可能性技術は、医療、経済学、人工知能といった分野における複雑なシステムを理解するのに不可欠である因果発見プロセスを強化する重要な可能性を秘めている。
しかし、因果グラフを導出するためにモデルに説明可能性を含む因果探索法は今のところ存在しない。
そこで,本稿では,この革新的なアプローチについて検討する。
具体的には、機械学習(ML)モデルと説明可能性(特にShapley値)の併用による、変数間の有意な因果関係の同定と解釈を行う因果発見手法であるREXを紹介する。
連続的な表付きデータからなる合成データセットの比較評価により、REXは非線形および付加的なノイズモデルを含む様々なデータ生成プロセスにおいて最先端の因果探索法より優れていることが明らかになった。
さらに、REXはサックス単細胞タンパク質シグナリングデータセットでテストされ、0.952の精度を達成し、キー因果関係を不正なエッジなしで回復した。
これらの結果は、偽陽性予測を最小化しつつ、真の因果構造を正確に回復するREXの有効性、多様なデータセット間の堅牢性、現実世界の問題への適用性を示すものである。
MLと説明可能性技術と因果発見を組み合わせることで、REXは予測モデリングと因果推論のギャップを埋め、複雑な因果構造を理解する効果的なツールを提供する。
REXはhttps://github.com/renero/causalgraph.comで公開されている。
関連論文リスト
- Robust Time Series Causal Discovery for Agent-Based Model Validation [5.430532390358285]
本研究では、ABM検証のための因果構造学習を強化するために、ロバストクロスバリデーション(RCV)アプローチを提案する。
RCV-VarLiNGAM と RCV-PCMCI を開発した。
提案手法は、拡張されたABM検証フレームワークに統合される。
論文 参考訳(メタデータ) (2024-10-25T09:13:26Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Causal disentanglement of multimodal data [1.589226862328831]
因果関係を持つ重要な特徴を発見するために,マルチモーダルデータと既知の物理を利用する因果表現学習アルゴリズム(causalPIMA)を導入する。
本研究は,完全教師なし環境下で重要な特徴を同時に発見しながら,解釈可能な因果構造を学習する能力を示すものである。
論文 参考訳(メタデータ) (2023-10-27T20:30:11Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
因果推論は科学の重要な目標であり、研究者は観測データを使って意味のある結論に達することができる。
経路モデル、構造方程式モデル(SEM)および指向非巡回グラフ(DAG)は、現象の根底にある因果構造に関する仮定を明確に特定する手段を提供する。
本稿では,機械学習のスーパーラーナーアンサンブルを統合したパスモデリング手法であるSuper Learner Equation Modelingを提案する。
論文 参考訳(メタデータ) (2023-08-08T16:04:42Z) - Learning Latent Structural Causal Models [31.686049664958457]
機械学習タスクでは、画像ピクセルや高次元ベクトルのような低レベルのデータを扱うことが多い。
本稿では,潜在構造因果モデルの因果変数,構造,パラメータについて共同推論を行う,抽出可能な近似推定手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T20:09:44Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
因果構造探索と因果構造探索を反復的に行うために, 因果学習を提案する。
ICLは、異なるデータメカニズムで最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-15T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。