REX: Causal Discovery based on Machine Learning and Explainability techniques
- URL: http://arxiv.org/abs/2501.12706v1
- Date: Wed, 22 Jan 2025 08:23:10 GMT
- Title: REX: Causal Discovery based on Machine Learning and Explainability techniques
- Authors: Jesus Renero, Idoia Ochoa, Roberto Maestre,
- Abstract summary: We introduce REX, a causal discovery method that leverages machine learning (ML) models coupled with explainability techniques, specifically Shapley values.
REX outperforms state-of-the-art causal discovery methods across diverse data generation processes, including non-linear and additive noise models.
REX bridges the gap between predictive modeling and causal inference, offering an effective tool for understanding complex causal structures.
- Score: 0.13108652488669734
- License:
- Abstract: Explainability techniques hold significant potential for enhancing the causal discovery process, which is crucial for understanding complex systems in areas like healthcare, economics, and artificial intelligence. However, no causal discovery methods currently incorporate explainability into their models to derive causal graphs. Thus, in this paper we explore this innovative approach, as it offers substantial potential and represents a promising new direction worth investigating. Specifically, we introduce REX, a causal discovery method that leverages machine learning (ML) models coupled with explainability techniques, specifically Shapley values, to identify and interpret significant causal relationships among variables. Comparative evaluations on synthetic datasets comprising continuous tabular data reveal that REX outperforms state-of-the-art causal discovery methods across diverse data generation processes, including non-linear and additive noise models. Moreover, REX was tested on the Sachs single-cell protein-signaling dataset, achieving a precision of 0.952 and recovering key causal relationships with no incorrect edges. Taking together, these results showcase REX's effectiveness in accurately recovering true causal structures while minimizing false positive predictions, its robustness across diverse datasets, and its applicability to real-world problems. By combining ML and explainability techniques with causal discovery, REX bridges the gap between predictive modeling and causal inference, offering an effective tool for understanding complex causal structures. REX is publicly available at https://github.com/renero/causalgraph.
Related papers
- Robust Time Series Causal Discovery for Agent-Based Model Validation [5.430532390358285]
This study proposes a Robust Cross-Validation (RCV) approach to enhance causal structure learning for ABM validation.
We develop RCV-VarLiNGAM and RCV-PCMCI, novel extensions of two prominent causal discovery algorithms.
The proposed approach is then integrated into an enhanced ABM validation framework.
arXiv Detail & Related papers (2024-10-25T09:13:26Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Explainability of Machine Learning Models under Missing Data [3.0485328005356136]
Missing data is a prevalent issue that can significantly impair model performance and explainability.
This paper briefly summarizes the development of the field of missing data and investigates the effects of various imputation methods on SHAP.
arXiv Detail & Related papers (2024-06-29T11:31:09Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - Causal disentanglement of multimodal data [1.589226862328831]
We introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships.
Our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.
arXiv Detail & Related papers (2023-10-27T20:30:11Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Learning Latent Structural Causal Models [31.686049664958457]
In machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors.
We present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent Structural Causal Model.
arXiv Detail & Related papers (2022-10-24T20:09:44Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
Imputated Causal Learning is proposed to perform iterative missing data imputation and causal structure discovery.
We show that ICL can outperform state-of-the-art methods under different missing data mechanisms.
arXiv Detail & Related papers (2020-01-15T14:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.