Robust Time Series Causal Discovery for Agent-Based Model Validation
- URL: http://arxiv.org/abs/2410.19412v1
- Date: Fri, 25 Oct 2024 09:13:26 GMT
- Title: Robust Time Series Causal Discovery for Agent-Based Model Validation
- Authors: Gene Yu, Ce Guo, Wayne Luk,
- Abstract summary: This study proposes a Robust Cross-Validation (RCV) approach to enhance causal structure learning for ABM validation.
We develop RCV-VarLiNGAM and RCV-PCMCI, novel extensions of two prominent causal discovery algorithms.
The proposed approach is then integrated into an enhanced ABM validation framework.
- Score: 5.430532390358285
- License:
- Abstract: Agent-Based Model (ABM) validation is crucial as it helps ensuring the reliability of simulations, and causal discovery has become a powerful tool in this context. However, current causal discovery methods often face accuracy and robustness challenges when applied to complex and noisy time series data, which is typical in ABM scenarios. This study addresses these issues by proposing a Robust Cross-Validation (RCV) approach to enhance causal structure learning for ABM validation. We develop RCV-VarLiNGAM and RCV-PCMCI, novel extensions of two prominent causal discovery algorithms. These aim to reduce the impact of noise better and give more reliable causal relation results, even with high-dimensional, time-dependent data. The proposed approach is then integrated into an enhanced ABM validation framework, which is designed to handle diverse data and model structures. The approach is evaluated using synthetic datasets and a complex simulated fMRI dataset. The results demonstrate greater reliability in causal structure identification. The study examines how various characteristics of datasets affect the performance of established causal discovery methods. These characteristics include linearity, noise distribution, stationarity, and causal structure density. This analysis is then extended to the RCV method to see how it compares in these different situations. This examination helps confirm whether the results are consistent with existing literature and also reveals the strengths and weaknesses of the novel approaches. By tackling key methodological challenges, the study aims to enhance ABM validation with a more resilient valuation framework presented. These improvements increase the reliability of model-driven decision making processes in complex systems analysis.
Related papers
- REX: Causal Discovery based on Machine Learning and Explainability techniques [0.13108652488669734]
We introduce REX, a causal discovery method that leverages machine learning (ML) models coupled with explainability techniques, specifically Shapley values.
REX outperforms state-of-the-art causal discovery methods across diverse data generation processes, including non-linear and additive noise models.
REX bridges the gap between predictive modeling and causal inference, offering an effective tool for understanding complex causal structures.
arXiv Detail & Related papers (2025-01-22T08:23:10Z) - An AI-powered Bayesian generative modeling approach for causal inference in observational studies [4.624176903641013]
CausalBGM is an AI-powered Bayesian generative modeling approach.
It estimates the individual treatment effect (ITE) by learning individual-specific distributions of a low-dimensional latent feature set.
arXiv Detail & Related papers (2025-01-01T06:52:45Z) - Testing and Improving the Robustness of Amortized Bayesian Inference for Cognitive Models [0.5223954072121659]
Contaminant observations and outliers often cause problems when estimating the parameters of cognitive models.
In this study, we test and improve the robustness of parameter estimation using amortized Bayesian inference.
The proposed method is straightforward and practical to implement and has a broad applicability in fields where outlier detection or removal is challenging.
arXiv Detail & Related papers (2024-12-29T21:22:24Z) - Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
We build a structural causal model (SCM) to describe the causality within data generation process.
We further conduct a thorough analysis of the mechanisms underlying spurious correlation.
In this regard, we propose to control confounding bias in OOD generalization by introducing a propensity score weighted estimator.
arXiv Detail & Related papers (2024-06-17T13:22:00Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Seeing is not Believing: Robust Reinforcement Learning against Spurious
Correlation [57.351098530477124]
We consider one critical type of robustness against spurious correlation, where different portions of the state do not have correlations induced by unobserved confounders.
A model that learns such useless or even harmful correlation could catastrophically fail when the confounder in the test case deviates from the training one.
Existing robust algorithms that assume simple and unstructured uncertainty sets are therefore inadequate to address this challenge.
arXiv Detail & Related papers (2023-07-15T23:53:37Z) - Learning Latent Structural Causal Models [31.686049664958457]
In machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors.
We present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent Structural Causal Model.
arXiv Detail & Related papers (2022-10-24T20:09:44Z) - BCDAG: An R package for Bayesian structure and Causal learning of
Gaussian DAGs [77.34726150561087]
We introduce the R package for causal discovery and causal effect estimation from observational data.
Our implementation scales efficiently with the number of observations and, whenever the DAGs are sufficiently sparse, the number of variables in the dataset.
We then illustrate the main functions and algorithms on both real and simulated datasets.
arXiv Detail & Related papers (2022-01-28T09:30:32Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.