Multiscale Training of Convolutional Neural Networks
- URL: http://arxiv.org/abs/2501.12739v1
- Date: Wed, 22 Jan 2025 09:13:47 GMT
- Title: Multiscale Training of Convolutional Neural Networks
- Authors: Niloufar Zakariaei, Shadab Ahamed, Eldad Haber, Moshe Eliasof,
- Abstract summary: Mesh-Free Convolutions (MFCs) are independent of input scale and avoid the pitfalls of traditional convolution kernels.
We show that MFCs can theoretically deliver substantial computational speedups without sacrificing performance in practice.
- Score: 6.805997961535213
- License:
- Abstract: Convolutional Neural Networks (CNNs) are the backbone of many deep learning methods, but optimizing them remains computationally expensive. To address this, we explore multiscale training frameworks and mathematically identify key challenges, particularly when dealing with noisy inputs. Our analysis reveals that in the presence of noise, the gradient of standard CNNs in multiscale training may fail to converge as the mesh-size approaches to , undermining the optimization process. This insight drives the development of Mesh-Free Convolutions (MFCs), which are independent of input scale and avoid the pitfalls of traditional convolution kernels. We demonstrate that MFCs, with their robust gradient behavior, ensure convergence even with noisy inputs, enabling more efficient neural network optimization in multiscale settings. To validate the generality and effectiveness of our multiscale training approach, we show that (i) MFCs can theoretically deliver substantial computational speedups without sacrificing performance in practice, and (ii) standard convolutions benefit from our multiscale training framework in practice.
Related papers
- conv_einsum: A Framework for Representation and Fast Evaluation of
Multilinear Operations in Convolutional Tensorial Neural Networks [28.416123889998243]
We develop a framework for representing tensorial convolution layers as einsum-like strings and a meta-algorithm conv_einsum which is able to evaluate these strings in a FLOPs-minimizing manner.
arXiv Detail & Related papers (2024-01-07T04:30:12Z) - An NMF-Based Building Block for Interpretable Neural Networks With
Continual Learning [0.8158530638728501]
Existing learning methods often struggle to balance interpretability and predictive performance.
Our approach aims to strike a better balance between these two aspects through the use of a building block based on NMF.
arXiv Detail & Related papers (2023-11-20T02:00:33Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Decouple Graph Neural Networks: Train Multiple Simple GNNs Simultaneously Instead of One [60.5818387068983]
Graph neural networks (GNN) suffer from severe inefficiency.
We propose to decouple a multi-layer GNN as multiple simple modules for more efficient training.
We show that the proposed framework is highly efficient with reasonable performance.
arXiv Detail & Related papers (2023-04-20T07:21:32Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Regularized Adaptation for Stable and Efficient Continuous-Level
Learning on Image Processing Networks [7.730087303035803]
We propose a novel continuous-level learning framework using a Filter Transition Network (FTN)
FTN is a non-linear module that easily adapt to new levels, and is regularized to prevent undesirable side-effects.
Extensive results for various image processing indicate that the performance of FTN is stable in terms of adaptation and adaptation.
arXiv Detail & Related papers (2020-03-11T07:46:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.