Singular leaning coefficients and efficiency in learning theory
- URL: http://arxiv.org/abs/2501.12747v2
- Date: Tue, 11 Feb 2025 09:41:34 GMT
- Title: Singular leaning coefficients and efficiency in learning theory
- Authors: Miki Aoyagi,
- Abstract summary: Singular learning models with non-positive Fisher information matrices include neural networks, reduced-rank regression, Boltzmann machines, normal mixture models, and others.
We examine learning coefficients, which indicate the general learning efficiency of deep linear learning models and three-layer neural network models with ReLU units.
- Score: 0.0
- License:
- Abstract: Singular learning models with non-positive Fisher information matrices include neural networks, reduced-rank regression, Boltzmann machines, normal mixture models, and others. These models have been widely used in the development of learning machines. However, theoretical analysis is still in its early stages. In this paper, we examine learning coefficients, which indicate the general learning efficiency of deep linear learning models and three-layer neural network models with ReLU units. Finally, we extend the results to include the case of the Softmax function.
Related papers
- Pseudo-Hamiltonian neural networks for learning partial differential
equations [0.0]
Pseudo-Hamiltonian neural networks (PHNN) were recently introduced for learning dynamical systems that can be modelled by ordinary differential equations.
In this paper, we extend the method to partial differential equations.
The resulting model is comprised of up to three neural networks, modelling terms representing conservation, dissipation and external forces, and discrete convolution operators that can either be learned or be given as input.
arXiv Detail & Related papers (2023-04-27T17:46:00Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Tensor networks for unsupervised machine learning [9.897828174118974]
We present the Autoregressive Matrix Product States (AMPS), a tensor-network-based model combining the matrix product states from quantum many-body physics and the autoregressive models from machine learning.
We show that the proposed model significantly outperforms the existing tensor-network-based models and the restricted Boltzmann machines.
arXiv Detail & Related papers (2021-06-24T12:51:00Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - From Boltzmann Machines to Neural Networks and Back Again [31.613544605376624]
We give new results for learning Restricted Boltzmann Machines, probably the most well-studied class of latent variable models.
Our results are based on new connections to learning two-layer neural networks under $ell_infty$ bounded input.
We then give an algorithm for learning a natural class of supervised RBMs with better runtime than what is possible for its related class of networks without distributional assumptions.
arXiv Detail & Related papers (2020-07-25T00:42:50Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
We present a class of neural networks with solvable training dynamics.
We find good agreement between our model's predictions and training dynamics in realistic deep learning settings.
We believe our results shed light on characteristics of models trained at different learning rates.
arXiv Detail & Related papers (2020-03-04T17:52:48Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
We propose a machine-learning approach to derive performance models from data.
We exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations.
This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model.
arXiv Detail & Related papers (2020-02-25T10:56:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.