論文の概要: Certified Guidance for Planning with Deep Generative Models
- arxiv url: http://arxiv.org/abs/2501.12815v1
- Date: Wed, 22 Jan 2025 11:46:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:33.363682
- Title: Certified Guidance for Planning with Deep Generative Models
- Title(参考訳): 深部生成モデルによる計画立案のための認定ガイダンス
- Authors: Francesco Giacomarra, Mehran Hosseini, Nicola Paoletti, Francesca Cairoli,
- Abstract要約: 計画目標を満たす可能性の高いアウトプットに向けて, 生産プロセスの舵取りとして, 様々なガイダンス戦略が導入されている。
提案手法では,特定の仕様を確率1で満たすことが保証された新しいモデルに,生成モデルを再学習することなく修正する手法である認証ガイダンスを導入する。
本研究の結果は,認定されていない既存の指導方法とは異なり,常に正しい生成モデルを生成することを確認した。
- 参考スコア(独自算出の注目度): 1.391198481393699
- License:
- Abstract: Deep generative models, such as generative adversarial networks and diffusion models, have recently emerged as powerful tools for planning tasks and behavior synthesis in autonomous systems. Various guidance strategies have been introduced to steer the generative process toward outputs that are more likely to satisfy the planning objectives. These strategies avoid the need for model retraining but do not provide any guarantee that the generated outputs will satisfy the desired planning objectives. To address this limitation, we introduce certified guidance, an approach that modifies a generative model, without retraining it, into a new model guaranteed to satisfy a given specification with probability one. We focus on Signal Temporal Logic specifications, which are rich enough to describe nontrivial planning tasks. Our approach leverages neural network verification techniques to systematically explore the latent spaces of the generative models, identifying latent regions that are certifiably correct with respect to the STL property of interest. We evaluate the effectiveness of our method on four planning benchmarks using GANs and diffusion models. Our results confirm that certified guidance produces generative models that are always correct, unlike existing guidance methods that are not certified.
- Abstract(参考訳): 生成的敵ネットワークや拡散モデルのような深層生成モデルは、最近、自律システムにおけるタスク計画と行動合成のための強力なツールとして登場した。
計画目標を満たす可能性の高いアウトプットに向けて, 生産プロセスの舵取りとして, 様々なガイダンス戦略が導入されている。
これらの戦略は、モデルの再トレーニングを回避しますが、生成した出力が望ましい計画目標を満たすことを保証するものではありません。
この制限に対処するために、我々は、生成モデルをトレーニングせずに変更する認証ガイダンスを、所定の仕様を確率1で満たすことが保証された新しいモデルに導入する。
我々は、非自明な計画タスクを記述するのに十分リッチなSignal Temporal Logic仕様に焦点を当てる。
提案手法はニューラルネットワークの検証手法を利用して生成モデルの潜伏領域を体系的に探索し,STL特性に対して正当である潜伏領域を同定する。
GANと拡散モデルを用いて,提案手法の有効性を4つの計画ベンチマークで評価した。
本研究の結果は,認定されていない既存の指導方法とは異なり,常に正しい生成モデルを生成することを確認した。
関連論文リスト
- Adaptive Planning with Generative Models under Uncertainty [20.922248169620783]
生成モデルによる計画は、幅広い領域にわたる効果的な意思決定パラダイムとして現れてきた。
最新の環境観測に基づいて決定を下すことができるため、各段階での継続的再計画は直感的に思えるかもしれないが、かなりの計算上の課題をもたらす。
本研究は,長軸状態軌跡を予測できる生成モデルの能力を活用する,シンプルな適応計画手法を導入することで,この問題に対処する。
論文 参考訳(メタデータ) (2024-08-02T18:07:53Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - LaPlaSS: Latent Space Planning for Stochastic Systems [8.529245639496274]
本稿では,自律型移動エージェントのリスクバウンド計画に対する「ジェネレーテッド・アンド・テスト」アプローチを提案する。
我々は変分オートエンコーダを用いて潜在線形力学モデルを学習し、計画問題を潜在空間にエンコードして候補軌道を生成する。
我々のアルゴリズムであるLaPlaSSは、学習力学を持つ実世界のエージェントに対して有界リスクを持つ軌道計画を生成することができることを示した。
論文 参考訳(メタデータ) (2024-04-10T14:52:35Z) - Stitching Sub-Trajectories with Conditional Diffusion Model for
Goal-Conditioned Offline RL [18.31263353823447]
本稿では,モデルに基づくオフラインゴールコンディション強化学習(Offline GCRL)手法を提案する。
本稿では,目標値と目標値に条件付けされた将来の計画を生成する拡散モデルを用いて,目標を許容するオフラインデータセットから目標値を推定する。
我々は,GCRLタスクの標準ベンチマークセットにおける最先端性能を報告し,オフラインデータ中の準最適軌道のセグメントを縫合して高品質な計画を生成する能力を実証する。
論文 参考訳(メタデータ) (2024-02-11T15:23:13Z) - Refining Diffusion Planner for Reliable Behavior Synthesis by Automatic
Detection of Infeasible Plans [25.326624139426514]
拡散に基づくプランニングは、長期のスパースリワードタスクにおいて有望な結果を示している。
しかし、生成モデルとしての性質のため、拡散モデルは実現可能な計画を生成することが保証されない。
本稿では,拡散モデルが生成する信頼できない計画を改善するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T10:35:42Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
本稿では,Transferable Prototype Learning (TCPL) という,本質的に解釈可能な手法を提案する。
この目的を達成するために、ソースドメインからターゲットドメインにカテゴリの基本概念を転送する階層的なプロトタイプモジュールを設計し、基礎となる推論プロセスを説明するためにドメイン共有プロトタイプを学習する。
総合的な実験により,提案手法は有効かつ直感的な説明を提供するだけでなく,従来の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-12T06:36:41Z) - Ownership Protection of Generative Adversarial Networks [9.355840335132124]
GAN(Generative Adversarial Network)は画像合成において顕著な成功を収めている。
GANの知的財産を技術的に保護することは重要である。
本稿では,対象モデルの共通特性と盗難モデルに基づく新たな所有権保護手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T14:31:58Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Planning with Diffusion for Flexible Behavior Synthesis [125.24438991142573]
我々は、できるだけ多くの軌道最適化パイプラインをモデリング問題に折り畳むことがどう見えるか検討する。
我々の技術的アプローチの核心は、軌道を反復的にデノベーションすることで計画する拡散確率モデルにある。
論文 参考訳(メタデータ) (2022-05-20T07:02:03Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。