Data-and-Semantic Dual-Driven Spectrum Map Construction for 6G Spectrum Management
- URL: http://arxiv.org/abs/2501.12853v1
- Date: Wed, 22 Jan 2025 13:03:38 GMT
- Title: Data-and-Semantic Dual-Driven Spectrum Map Construction for 6G Spectrum Management
- Authors: Jiayu Liu, Fuhui Zhou, Xiaodong Liu, Rui Ding, Lu Yuan, Qihui Wu,
- Abstract summary: The proposed method can infer the spectrum utilization status of missing frequencies and improve the completeness of the spectrum map construction.
The accuracy of spectrum map construction achieved by the proposed data-and-semantic dual-driven method outperforms the benchmark schemes.
- Score: 65.78866395226449
- License:
- Abstract: Spectrum maps reflect the utilization and distribution of spectrum resources in the electromagnetic environment, serving as an effective approach to support spectrum management. However, the construction of spectrum maps in urban environments is challenging because of high-density connection and complex terrain. Moreover, the existing spectrum map construction methods are typically applied to a fixed frequency, which cannot cover the entire frequency band. To address the aforementioned challenges, a UNet-based data-and-semantic dual-driven method is proposed by introducing the semantic knowledge of binary city maps and binary sampling location maps to enhance the accuracy of spectrum map construction in complex urban environments with dense communications. Moreover, a joint frequency-space reasoning model is exploited to capture the correlation of spectrum data in terms of space and frequency, enabling the realization of complete spectrum map construction without sampling all frequencies of spectrum data. The simulation results demonstrate that the proposed method can infer the spectrum utilization status of missing frequencies and improve the completeness of the spectrum map construction. Furthermore, the accuracy of spectrum map construction achieved by the proposed data-and-semantic dual-driven method outperforms the benchmark schemes, especially in scenarios with low sampling density.
Related papers
- Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
Convolutional neural networks (CNNs) have achieved remarkable performance in hyperspectral image (HSI) classification.
We propose a spectral graph reasoning network (SGR) learning framework comprising two crucial modules.
Experiments on two HSI datasets demonstrate that the proposed architecture can significantly improve the classification accuracy.
arXiv Detail & Related papers (2024-07-02T20:29:23Z) - SATSense: Multi-Satellite Collaborative Framework for Spectrum Sensing [13.456786799919472]
Low Earth Orbit satellite Internet has recently been deployed, providing worldwide service with non-terrestrial networks.
We propose a collaborative sensing scheme utilizing diverse data from multiple satellites.
We propose a graph neural network-based algorithm to achieve effective spectrum sensing.
arXiv Detail & Related papers (2024-05-24T13:29:57Z) - SpectralNeRF: Physically Based Spectral Rendering with Neural Radiance
Field [70.15900280156262]
We propose an end-to-end Neural Radiance Field (NeRF)-based architecture for high-quality physically based rendering from a novel spectral perspective.
SpectralNeRF is superior to recent NeRF-based methods when synthesizing new views on synthetic and real datasets.
arXiv Detail & Related papers (2023-12-14T07:19:31Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Collaborative Wideband Spectrum Sensing and Scheduling for Networked
UAVs in UTM Systems [2.755290959487378]
We propose a data-driven framework for collaborative wideband spectrum sensing and scheduling for networked unmanned aerial vehicles (UAVs)
In the spectrum scheduling phase, we leverage reinforcement learning (RL) solutions to dynamically allocate the detected spectrum holes to the secondary users (i.e., UAVs)
This evaluation methodology provides a flexible framework to generate large spectrum datasets that could be used for developing ML/AI-based spectrum management solutions for aerial devices.
arXiv Detail & Related papers (2023-08-09T16:08:44Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
In the hyperspectral image classification (HSIC) task, the most commonly used model validation paradigm is partitioning the training-test dataset through pixel-wise random sampling.
In our experiments, we found that the high accuracy was reached because the training and test datasets share a lot of information.
We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, that preserves generalization across dataset partitions.
arXiv Detail & Related papers (2023-06-29T07:55:43Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
We propose a conditioning trick, called difference departure from normality, applied on the generator network in response to instability issues during GAN training.
We force the generator to get closer to the departure from normality function of real samples computed in the spectral domain of Schur decomposition.
arXiv Detail & Related papers (2020-10-12T16:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.