SpectrumFM: A New Paradigm for Spectrum Cognition
- URL: http://arxiv.org/abs/2508.02742v1
- Date: Sat, 02 Aug 2025 14:40:50 GMT
- Title: SpectrumFM: A New Paradigm for Spectrum Cognition
- Authors: Chunyu Liu, Hao Zhang, Wei Wu, Fuhui Zhou, Qihui Wu, Derrick Wing Kwan Ng, Chan-Byoung Chae,
- Abstract summary: We propose a spectrum foundation model, termed SpectrumFM, which provides a new paradigm for spectrum cognition.<n>An innovative spectrum encoder that exploits the convolutional neural networks is proposed to effectively capture both fine-grained local signal structures and high-level global dependencies in the spectrum data.<n>Two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, are developed for pre-training SpectrumFM, enabling the model to learn rich and transferable representations.
- Score: 65.65474629224558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The enhancement of spectrum efficiency and the realization of secure spectrum utilization are critically dependent on spectrum cognition. However, existing spectrum cognition methods often exhibit limited generalization and suboptimal accuracy when deployed across diverse spectrum environments and tasks. To overcome these challenges, we propose a spectrum foundation model, termed SpectrumFM, which provides a new paradigm for spectrum cognition. An innovative spectrum encoder that exploits the convolutional neural networks and the multi-head self attention mechanisms is proposed to effectively capture both fine-grained local signal structures and high-level global dependencies in the spectrum data. To enhance its adaptability, two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, are developed for pre-training SpectrumFM, enabling the model to learn rich and transferable representations. Furthermore, low-rank adaptation (LoRA) parameter-efficient fine-tuning is exploited to enable SpectrumFM to seamlessly adapt to various downstream spectrum cognition tasks, including spectrum sensing (SS), anomaly detection (AD), and wireless technology classification (WTC). Extensive experiments demonstrate the superiority of SpectrumFM over state-of-the-art methods. Specifically, it improves detection probability in the SS task by 30% at -4 dB signal-to-noise ratio (SNR), boosts the area under the curve (AUC) in the AD task by over 10%, and enhances WTC accuracy by 9.6%.
Related papers
- Scalable Spectrum Availability Prediction using a Markov Chain Framework and ITU-R Propagation Models [0.0]
This paper proposes a scalable framework for spectrum availability prediction.<n>It combines a two-state Markov chain model of primary user activity with high-fidelity propagation models from the ITU-R.<n>The framework is flexible and can be adapted to various frequency bands and scenarios.
arXiv Detail & Related papers (2025-07-30T03:22:55Z) - SpectrumFM: A Foundation Model for Intelligent Spectrum Management [99.08036558911242]
Existing intelligent spectrum management methods, typically based on small-scale models, suffer from notable limitations in recognition accuracy, convergence speed, and generalization.<n>This paper proposes a novel spectrum foundation model, termed SpectrumFM, establishing a new paradigm for spectrum management.<n>Experiments demonstrate that SpectrumFM achieves superior performance in terms of accuracy, robustness, adaptability, few-shot learning efficiency, and convergence speed.
arXiv Detail & Related papers (2025-05-02T04:06:39Z) - CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.<n> variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.<n>We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - Collaborative Enhancement Network for Low-quality Multi-spectral Vehicle Re-identification [23.520785716235398]
The performance of multi-spectral vehicle Re-identification (ReID) is significantly degraded when some important cues in visible, near infrared and thermal infrared spectra are lost.<n>Existing methods generate or enhance missing details in low-quality spectra data using the high-quality one, generally called the primary spectrum.<n>We propose the Collaborative Enhancement Network (CoEN), which generates a high-quality proxy from all spectra data.
arXiv Detail & Related papers (2025-04-21T06:07:32Z) - FE-UNet: Frequency Domain Enhanced U-Net for Low-Frequency Information-Rich Image Segmentation [48.034848981295525]
We address the differences in frequency band sensitivity between CNNs and the human visual system.<n>We propose a wavelet adaptive spectrum fusion (WASF) method inspired by biological vision mechanisms to balance cross-frequency image features.<n>We develop the FE-UNet model, which employs a SAM2 backbone network and incorporates fine-tuned Hiera-Large modules to ensure segmentation accuracy.
arXiv Detail & Related papers (2025-02-06T07:24:34Z) - Deep Learning for Spectrum Prediction in Cognitive Radio Networks: State-of-the-Art, New Opportunities, and Challenges [9.499371206380546]
This paper proposes a novel intra-bandtemporal spectrum prediction framework named ViLSTransTM.<n>The framework integrates visual self-attention and long short-term memory to capture both local and global long-term dependencies of spectrum usage patterns.
arXiv Detail & Related papers (2024-12-13T04:36:05Z) - Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - Holistic Physics Solver: Learning PDEs in a Unified Spectral-Physical Space [54.13671100638092]
Holistic Physics Mixer (HPM) is a framework for integrating spectral and physical information in a unified space.<n>We show that HPM consistently outperforms state-of-the-art methods in both accuracy and computational efficiency.
arXiv Detail & Related papers (2024-10-15T08:19:39Z) - Design of an Novel Spectrum Sensing Scheme Based on Long Short-Term
Memory and Experimental Validation [0.7349727826230862]
We propose an approach of spectrum sensing based on long short term memory (LSTM) which is a critical element of deep learning networks (DLN)
The proposed sensing technique is validated with the help of an empirical testbed setup using Adalm Pluto.
arXiv Detail & Related papers (2021-11-21T08:51:48Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.