論文の概要: A Functional Software Reference Architecture for LLM-Integrated Systems
- arxiv url: http://arxiv.org/abs/2501.12904v1
- Date: Wed, 22 Jan 2025 14:30:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:14.804558
- Title: A Functional Software Reference Architecture for LLM-Integrated Systems
- Title(参考訳): LLM統合システムのための関数型ソフトウェアリファレンスアーキテクチャ
- Authors: Alessio Bucaioni, Martin Weyssow, Junda He, Yunbo Lyu, David Lo,
- Abstract要約: 大規模言語モデルのソフトウェアシステムへの統合は、自然言語理解、意思決定、自律的なタスク実行などの能力を変化させている。
一般的に受け入れられているソフトウェアリファレンスアーキテクチャがないことは、その設計と品質特性に関する体系的な理由を妨げます。
本稿では,これらの課題に対処するための概念的枠組みとして,予備機能参照アーキテクチャのテキスト処理結果について述べる。
- 参考スコア(独自算出の注目度): 8.68898878009242
- License:
- Abstract: The integration of large language models into software systems is transforming capabilities such as natural language understanding, decision-making, and autonomous task execution. However, the absence of a commonly accepted software reference architecture hinders systematic reasoning about their design and quality attributes. This gap makes it challenging to address critical concerns like privacy, security, modularity, and interoperability, which are increasingly important as these systems grow in complexity and societal impact. In this paper, we describe our \textit{emerging} results for a preliminary functional reference architecture as a conceptual framework to address these challenges and guide the design, evaluation, and evolution of large language model-integrated systems. We identify key architectural concerns for these systems, informed by current research and practice. We then evaluate how the architecture addresses these concerns and validate its applicability using three open-source large language model-integrated systems in computer vision, text processing, and coding.
- Abstract(参考訳): 大規模言語モデルのソフトウェアシステムへの統合は、自然言語理解、意思決定、自律的なタスク実行などの機能を変革している。
しかしながら、一般的に受け入れられているソフトウェアリファレンスアーキテクチャが存在しないことは、その設計と品質特性に関する体系的な推論を妨げる。
このギャップは、プライバシやセキュリティ、モジュール性、相互運用性といった重要な問題に対処することを難しくしています。
本稿では,これらの課題に対処し,大規模言語モデル統合システムの設計,評価,進化を導くための概念的枠組みとして,予備機能参照アーキテクチャに関する<textit{emerging}の結果について述べる。
これらのシステムに対する重要なアーキテクチャ上の懸念を特定し、現在の研究と実践によって通知する。
アーキテクチャがこれらの懸念にどのように対処するかを評価し、コンピュータビジョン、テキスト処理、コーディングの3つのオープンソースの大規模言語モデル統合システムを用いて、その適用性を検証する。
関連論文リスト
- Architectural Patterns for Designing Quantum Artificial Intelligence Systems [25.42535682546052]
人工知能システムを強化するために量子コンピューティング技術を利用することで、トレーニングと推論時間を改善し、ノイズや敵攻撃に対する堅牢性を高め、精度を損なうことなくパラメータの数を減らすことが期待されている。
しかし、概念実証やシミュレーションを超えてこれらのシステムの実用的な応用を開発することは、量子ハードウェアの限界とそのようなシステムのソフトウェア工学における未発達の知識基盤によって大きな課題に直面している。
我々は、量子化人工知能システムのソフトウェアアーキテクチャに関連する課題と解決策を特定するために、体系的なマッピング研究を行った。
論文 参考訳(メタデータ) (2024-11-14T05:09:07Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
大規模言語モデル(LLM)の急速な発展は、人工知能の分野を大きく変えた。
これらのモデルは多様なアプリケーションに統合され、研究と産業の両方に影響を及ぼす。
本稿では,大規模言語モデルの特徴と制約に対処するために,ハードウェアとソフトウェアの共同設計手法について検討する。
論文 参考訳(メタデータ) (2024-10-08T21:46:52Z) - Centralization potential of automotive E/E architectures [2.7143159361691227]
集中型アーキテクチャは、しばしば課題をマスターするための重要なイネーブラーと見なされる。
システムデザイナとファンクションディベロッパが中央集権化のためのシステムの可能性を分析するためのガイドラインに関する研究ギャップがある。
本稿では, 理論的研究と実践的応用のギャップを埋め, 実践者に価値あるテイクアウトを提供する。
論文 参考訳(メタデータ) (2024-09-16T19:36:32Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Building Trust in Conversational AI: A Comprehensive Review and Solution
Architecture for Explainable, Privacy-Aware Systems using LLMs and Knowledge
Graph [0.33554367023486936]
我々は150以上の大規模言語モデル(LLM)の詳細なレビューを提供する包括的ツールを紹介する。
本稿では,LLMの言語機能と知識グラフの構造的ダイナミクスをシームレスに統合する機能的アーキテクチャを提案する。
我々のアーキテクチャは言語学の洗練と実情の厳密さを巧みにブレンドし、ロールベースアクセス制御によるデータセキュリティをさらに強化する。
論文 参考訳(メタデータ) (2023-08-13T22:47:51Z) - Enhancing Architecture Frameworks by Including Modern Stakeholders and their Views/Viewpoints [48.87872564630711]
データサイエンスと機械学習に関連する関心事、例えばデータサイエンティストやデータエンジニアの利害関係者は、まだ既存のアーキテクチャフレームワークには含まれていない。
10か国25以上の組織から61名の被験者を対象に調査を行った。
論文 参考訳(メタデータ) (2023-08-09T21:54:34Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - MRKL Systems: A modular, neuro-symbolic architecture that combines large
language models, external knowledge sources and discrete reasoning [50.40151403246205]
巨大な言語モデル(LM)は、自然言語ベースの知識タスクのゲートウェイとして機能する、AIの新しい時代を支えている。
離散的な知識と推論モジュールによって補完される、複数のニューラルモデルによる柔軟なアーキテクチャを定義する。
本稿では,MRKL(Modular Reasoning, Knowledge and Language)システムと呼ばれる,このニューロシンボリックアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2022-05-01T11:01:28Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。