A Selective Homomorphic Encryption Approach for Faster Privacy-Preserving Federated Learning
- URL: http://arxiv.org/abs/2501.12911v1
- Date: Wed, 22 Jan 2025 14:37:44 GMT
- Title: A Selective Homomorphic Encryption Approach for Faster Privacy-Preserving Federated Learning
- Authors: Abdulkadir Korkmaz, Praveen Rao,
- Abstract summary: Federated learning is a machine learning method that supports training models on decentralized devices or servers.
We propose a new approach that employs selective encryption, homomorphic encryption, differential privacy, and bit-wise scrambling to minimize data leakage.
Our approach is up to 90% faster than applying fully homomorphic encryption on the model weights.
- Score: 2.942616054218564
- License:
- Abstract: Federated learning is a machine learning method that supports training models on decentralized devices or servers, where each holds its local data, removing the need for data exchange. This approach is especially useful in healthcare, as it enables training on sensitive data without needing to share them. The nature of federated learning necessitates robust security precautions due to data leakage concerns during communication. To address this issue, we propose a new approach that employs selective encryption, homomorphic encryption, differential privacy, and bit-wise scrambling to minimize data leakage while achieving good execution performance. Our technique , FAS (fast and secure federated learning) is used to train deep learning models on medical imaging data. We implemented our technique using the Flower framework and compared with a state-of-the-art federated learning approach that also uses selective homomorphic encryption. Our experiments were run in a cluster of eleven physical machines to create a real-world federated learning scenario on different datasets. We observed that our approach is up to 90\% faster than applying fully homomorphic encryption on the model weights. In addition, we can avoid the pretraining step that is required by our competitor and can save up to 20\% in terms of total execution time. While our approach was faster, it obtained similar security results as the competitor.
Related papers
- An advanced data fabric architecture leveraging homomorphic encryption
and federated learning [10.779491433438144]
This paper introduces a secure approach for medical image analysis using federated learning and partially homomorphic encryption within a distributed data fabric architecture.
The study demonstrates the method's effectiveness through a case study on pituitary tumor classification, achieving a significant level of accuracy.
arXiv Detail & Related papers (2024-02-15T08:50:36Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
We propose a robust representation learning framework for privacy-preserving machine learning (ppML)
Our method centers on training autoencoders in a multi-objective manner and then concatenating the latent and learned features from the encoding part as the encoded form of our data.
With our proposed framework, we can share our data and use third party tools without being under the threat of revealing its original form.
arXiv Detail & Related papers (2023-09-08T16:41:25Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Effect of Homomorphic Encryption on the Performance of Training
Federated Learning Generative Adversarial Networks [10.030986278376567]
A Generative Adversarial Network (GAN) is a deep-learning generative model in the field of Machine Learning (ML)
In certain fields, such as medicine, the training data may be hospital patient records that are stored across different hospitals.
This paper will focus on the performance loss of training an FL-GAN with three different types of Homomorphic Encryption.
arXiv Detail & Related papers (2022-07-01T08:35:10Z) - Certified Robustness in Federated Learning [54.03574895808258]
We study the interplay between federated training, personalization, and certified robustness.
We find that the simple federated averaging technique is effective in building not only more accurate, but also more certifiably-robust models.
arXiv Detail & Related papers (2022-06-06T12:10:53Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
This paper proposes a privacy-preserving federated learning algorithm for medical data using homomorphic encryption.
The proposed algorithm uses a secure multi-party computation protocol to protect the deep learning model from the adversaries.
arXiv Detail & Related papers (2022-04-16T08:38:35Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - GRNN: Generative Regression Neural Network -- A Data Leakage Attack for
Federated Learning [3.050919759387984]
We show that image-based privacy data can be easily recovered in full from the shared gradient only via our proposed Generative Regression Neural Network (GRNN)
We evaluate our method on several image classification tasks. The results illustrate that our proposed GRNN outperforms state-of-the-art methods with better stability, stronger, and higher accuracy.
arXiv Detail & Related papers (2021-05-02T18:39:37Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z) - FedOCR: Communication-Efficient Federated Learning for Scene Text
Recognition [76.26472513160425]
We study how to make use of decentralized datasets for training a robust scene text recognizer.
To make FedOCR fairly suitable to be deployed on end devices, we make two improvements including using lightweight models and hashing techniques.
arXiv Detail & Related papers (2020-07-22T14:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.