A Selective Homomorphic Encryption Approach for Faster Privacy-Preserving Federated Learning
- URL: http://arxiv.org/abs/2501.12911v4
- Date: Thu, 05 Jun 2025 13:47:27 GMT
- Title: A Selective Homomorphic Encryption Approach for Faster Privacy-Preserving Federated Learning
- Authors: Abdulkadir Korkmaz, Praveen Rao,
- Abstract summary: Federated learning (FL) has come forward as a critical approach for privacy-preserving machine learning in healthcare.<n>Current security implementations for these systems face a fundamental trade-off: rigorous cryptographic protections impose prohibitive computational overhead.<n>We present Fast and Secure Federated Learning, a novel approach that strategically combines selective homomorphic encryption, differential privacy, and bitwise scrambling to achieve robust security.
- Score: 2.942616054218564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has come forward as a critical approach for privacy-preserving machine learning in healthcare, allowing collaborative model training across decentralized medical datasets without exchanging clients' data. However, current security implementations for these systems face a fundamental trade-off: rigorous cryptographic protections like fully homomorphic encryption (FHE) impose prohibitive computational overhead, while lightweight alternatives risk vulnerable data leakage through model updates. To address this issue, we present FAS (Fast and Secure Federated Learning), a novel approach that strategically combines selective homomorphic encryption, differential privacy, and bitwise scrambling to achieve robust security without compromising practical usability. Our approach eliminates the need for model pretraining phases while dynamically protecting high-risk model parameters through layered encryption and obfuscation. We implemented FAS using the Flower framework and evaluated it on a cluster of eleven physical machines. Our approach was up to 90\% faster than applying FHE on the model weights. In addition, we eliminated the computational overhead that is required by competitors such as FedML-HE and MaskCrypt. Our approach was up to 1.5$\times$ faster than the competitors while achieving comparable security results. Experimental evaluations on medical imaging datasets confirm that FAS maintains similar security results to conventional FHE against gradient inversion attacks while preserving diagnostic model accuracy. These results position FAS as a practical solution for latency-sensitive healthcare applications where both privacy preservation and computational efficiency are requirements.
Related papers
- SenseCrypt: Sensitivity-guided Selective Homomorphic Encryption for Joint Federated Learning in Cross-Device Scenarios [7.594528129456989]
Homomorphic Encryption (HE) prevails in securing Federated Learning (FL), but suffers from high overhead and adaptation cost.<n>We propose SenseCrypt, a Sensitivity-guided selective Homomorphic EnCryption framework, to adaptively balance security and HE overhead per cross-device FL client.<n>Experiments demonstrate that SenseCrypt ensures security against the state-of-the-art inversion attacks, while achieving normal model accuracy as on IID data, and reducing training time by 58.4%-88.7% as compared to traditional HE methods.
arXiv Detail & Related papers (2025-08-06T05:42:41Z) - FuSeFL: Fully Secure and Scalable Cross-Silo Federated Learning [0.8686220240511062]
Federated Learning (FL) enables collaborative model training without centralizing client data, making it attractive for privacy-sensitive domains.<n>We present FuSeFL, a fully secure and scalable FL scheme designed for cross-silo settings.
arXiv Detail & Related papers (2025-07-18T00:50:44Z) - Secure Distributed Learning for CAVs: Defending Against Gradient Leakage with Leveled Homomorphic Encryption [0.0]
Homomorphic Encryption (HE) offers a promising alternative to Differential Privacy (DP) and Secure Multi-Party Computation (SMPC)<n>We evaluate various HE schemes to identify the most suitable for Federated Learning (FL) in resource-constrained environments.<n>We develop a full HE-based FL pipeline that effectively mitigates Deep Leakage from Gradients (DLG) attacks while preserving model accuracy.
arXiv Detail & Related papers (2025-06-09T16:12:18Z) - QuanCrypt-FL: Quantized Homomorphic Encryption with Pruning for Secure Federated Learning [0.48342038441006796]
We propose QuanCrypt-FL, a novel algorithm that combines low-bit quantization and pruning techniques to enhance protection against attacks.
We validate our approach on MNIST, CIFAR-10, and CIFAR-100 datasets, demonstrating superior performance compared to state-of-the-art methods.
QuanCrypt-FL achieves up to 9x faster encryption, 16x faster decryption, and 1.5x faster inference compared to BatchCrypt, with training time reduced by up to 3x.
arXiv Detail & Related papers (2024-11-08T01:46:00Z) - Enhancing Quantum Security over Federated Learning via Post-Quantum Cryptography [38.77135346831741]
Federated learning (FL) has become one of the standard approaches for deploying machine learning models on edge devices.
Current digital signature algorithms can protect these communicated model updates, but they fail to ensure quantum security in the era of large-scale quantum computing.
In this work, we empirically investigate the impact of these three NIST-standardized PQC algorithms for digital signatures within the FL procedure.
arXiv Detail & Related papers (2024-09-06T22:02:08Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - An advanced data fabric architecture leveraging homomorphic encryption
and federated learning [10.779491433438144]
This paper introduces a secure approach for medical image analysis using federated learning and partially homomorphic encryption within a distributed data fabric architecture.
The study demonstrates the method's effectiveness through a case study on pituitary tumor classification, achieving a significant level of accuracy.
arXiv Detail & Related papers (2024-02-15T08:50:36Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
We propose a robust representation learning framework for privacy-preserving machine learning (ppML)
Our method centers on training autoencoders in a multi-objective manner and then concatenating the latent and learned features from the encoding part as the encoded form of our data.
With our proposed framework, we can share our data and use third party tools without being under the threat of revealing its original form.
arXiv Detail & Related papers (2023-09-08T16:41:25Z) - An Efficient and Multi-private Key Secure Aggregation for Federated Learning [41.29971745967693]
We propose an efficient and multi-private key secure aggregation scheme for federated learning.
Specifically, we skillfully modify the variant ElGamal encryption technique to achieve homomorphic addition operation.
For the high dimensional deep model parameter, we introduce a super-increasing sequence to compress multi-dimensional data into 1-D.
arXiv Detail & Related papers (2023-06-15T09:05:36Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Effect of Homomorphic Encryption on the Performance of Training
Federated Learning Generative Adversarial Networks [10.030986278376567]
A Generative Adversarial Network (GAN) is a deep-learning generative model in the field of Machine Learning (ML)
In certain fields, such as medicine, the training data may be hospital patient records that are stored across different hospitals.
This paper will focus on the performance loss of training an FL-GAN with three different types of Homomorphic Encryption.
arXiv Detail & Related papers (2022-07-01T08:35:10Z) - Certified Robustness in Federated Learning [54.03574895808258]
We study the interplay between federated training, personalization, and certified robustness.
We find that the simple federated averaging technique is effective in building not only more accurate, but also more certifiably-robust models.
arXiv Detail & Related papers (2022-06-06T12:10:53Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
This paper proposes a privacy-preserving federated learning algorithm for medical data using homomorphic encryption.
The proposed algorithm uses a secure multi-party computation protocol to protect the deep learning model from the adversaries.
arXiv Detail & Related papers (2022-04-16T08:38:35Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - GRNN: Generative Regression Neural Network -- A Data Leakage Attack for
Federated Learning [3.050919759387984]
We show that image-based privacy data can be easily recovered in full from the shared gradient only via our proposed Generative Regression Neural Network (GRNN)
We evaluate our method on several image classification tasks. The results illustrate that our proposed GRNN outperforms state-of-the-art methods with better stability, stronger, and higher accuracy.
arXiv Detail & Related papers (2021-05-02T18:39:37Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z) - FedOCR: Communication-Efficient Federated Learning for Scene Text
Recognition [76.26472513160425]
We study how to make use of decentralized datasets for training a robust scene text recognizer.
To make FedOCR fairly suitable to be deployed on end devices, we make two improvements including using lightweight models and hashing techniques.
arXiv Detail & Related papers (2020-07-22T14:30:50Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.