Autonomy-of-Experts Models
- URL: http://arxiv.org/abs/2501.13074v1
- Date: Wed, 22 Jan 2025 18:37:08 GMT
- Title: Autonomy-of-Experts Models
- Authors: Ang Lv, Ruobing Xie, Yining Qian, Songhao Wu, Xingwu Sun, Zhanhui Kang, Di Wang, Rui Yan,
- Abstract summary: We propose a novel MoE paradigm in which experts autonomously select themselves to process inputs.
AoE is based on the insight that an expert is aware of its own capacity to effectively process a token.
Only the top-ranking experts proceed with the forward pass, while the others abort.
- Score: 34.82103329222486
- License:
- Abstract: Mixture-of-Experts (MoE) models mostly use a router to assign tokens to specific expert modules, activating only partial parameters and often outperforming dense models. We argue that the separation between the router's decision-making and the experts' execution is a critical yet overlooked issue, leading to suboptimal expert selection and ineffective learning. To address this, we propose Autonomy-of-Experts (AoE), a novel MoE paradigm in which experts autonomously select themselves to process inputs. AoE is based on the insight that an expert is aware of its own capacity to effectively process a token, an awareness reflected in the scale of its internal activations. In AoE, routers are removed; instead, experts pre-compute internal activations for inputs and are ranked based on their activation norms. Only the top-ranking experts proceed with the forward pass, while the others abort. The overhead of pre-computing activations is reduced through a low-rank weight factorization. This self-evaluating-then-partner-comparing approach ensures improved expert selection and effective learning. We pre-train language models having 700M up to 4B parameters, demonstrating that AoE outperforms traditional MoE models with comparable efficiency.
Related papers
- UOE: Unlearning One Expert Is Enough For Mixture-of-experts LLMS [35.237427998489785]
We propose a novel single-expert unlearning framework, referred to as UOE, for Mixture-of-Experts (MoE) LLMs.
Through expert attribution, unlearning is concentrated on the most actively engaged expert for the specified knowledge.
We show that UOE enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks.
arXiv Detail & Related papers (2024-11-27T22:46:08Z) - DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models [1.4255659581428335]
We propose a novel Dynamically Allocates a variable number of experts for Mixture-of-Experts (DA-MoE) models based on an effective token importance measure.
Our approach consistently outperforms the state-of-the-art Transformer based MoE model on the popular GLUE benchmark.
arXiv Detail & Related papers (2024-09-10T17:36:15Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast [58.98411447739218]
Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency.
We propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference.
Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding.
arXiv Detail & Related papers (2024-05-23T12:45:29Z) - Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models [33.834215393960605]
We introduce the Dynamic Mixture of Experts (DynMoE) technique to enhance the efficiency of training and inference for Transformer-based foundational models.
DynMoE incorporates a novel gating method that enables each token to automatically determine the number of experts to activate.
Our results demonstrate the effectiveness of our approach to achieve competitive performance compared to GMoE for vision and language tasks, and MoE-LLaVA for vision-language tasks.
arXiv Detail & Related papers (2024-05-23T08:18:30Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
We introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models.
Our method dynamically selects experts based on the confidence level in expert selection for each input.
arXiv Detail & Related papers (2024-03-12T13:41:15Z) - Taming Sparsely Activated Transformer with Stochastic Experts [76.0711573018493]
Sparsely activated models (SAMs) can easily scale to have outrageously large amounts of parameters without significant increase in computational cost.
In this paper, we propose a new expert-based model, THOR (Transformer witH StOchastic ExpeRts)
Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference.
arXiv Detail & Related papers (2021-10-08T17:15:47Z) - Soft Expert Reward Learning for Vision-and-Language Navigation [94.86954695912125]
Vision-and-Language Navigation (VLN) requires an agent to find a specified spot in an unseen environment by following natural language instructions.
We introduce a Soft Expert Reward Learning (SERL) model to overcome the reward engineering designing and generalisation problems of the VLN task.
arXiv Detail & Related papers (2020-07-21T14:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.