Bayesian Model Parameter Learning in Linear Inverse Problems with Application in EEG Focal Source Imaging
- URL: http://arxiv.org/abs/2501.13109v1
- Date: Tue, 07 Jan 2025 18:14:24 GMT
- Title: Bayesian Model Parameter Learning in Linear Inverse Problems with Application in EEG Focal Source Imaging
- Authors: Alexandra Koulouri, Ville Rimpilainen,
- Abstract summary: Inverse problems can be described as limited-data problems in which the signal of interest cannot be observed directly.
We studied a linear inverse problem that included an unknown non-linear model parameter.
We utilized a Bayesian model-based learning approach that allowed signal recovery and subsequently estimation of the model parameter.
- Score: 49.1574468325115
- License:
- Abstract: Inverse problems can be described as limited-data problems in which the signal of interest cannot be observed directly. A physics-based forward model that relates the signal with the observations is typically needed. Unfortunately, unknown model parameters and imperfect forward models can undermine the signal recovery. Even though supervised machine learning offers promising avenues to improve the robustness of the solutions, we have to rely on model-based learning when there is no access to ground truth for the training. Here, we studied a linear inverse problem that included an unknown non-linear model parameter and utilized a Bayesian model-based learning approach that allowed signal recovery and subsequently estimation of the model parameter. This approach, called Bayesian Approximation Error approach, employed a simplified model of the physics of the problem augmented with an approximation error term that compensated for the simplification. An error subspace was spanned with the help of the eigenvectors of the approximation error covariance matrix which allowed, alongside the primary signal, simultaneous estimation of the induced error. The estimated error and signal were then used to determine the unknown model parameter. For the model parameter estimation, we tested different approaches: a conditional Gaussian regression, an iterative (model-based) optimization, and a Gaussian process that was modeled with the help of physics-informed learning. In addition, alternating optimization was used as a reference method. As an example application, we focused on the problem of reconstructing brain activity from EEG recordings under the condition that the electrical conductivity of the patient's skull was unknown in the model. Our results demonstrated clear improvements in EEG source localization accuracy and provided feasible estimates for the unknown model parameter, skull conductivity.
Related papers
- Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators [8.585650361148558]
We propose a new framework to learn a nonlocal homogenized surrogate model and its structural model error.
This framework provides discrepancy-adaptive uncertainty quantification for homogenized material response predictions in long-term simulations.
arXiv Detail & Related papers (2024-10-27T04:17:27Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Efficient Prior Calibration From Indirect Data [5.588334720483076]
This paper is concerned with learning the prior model from data, in particular, learning the prior from multiple realizations of indirect data obtained through the noisy observation process.
An efficient residual-based neural operator approximation of the forward model is proposed and it is shown that this may be learned concurrently with the pushforward map.
arXiv Detail & Related papers (2024-05-28T08:34:41Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
We propose a methodology for improving the accuracy of surrogate models of the observable response of physical systems.
We apply the proposed methodology to constructing surrogate models via the Basis Adaptation (BA) method of the stationary hydraulic head response.
arXiv Detail & Related papers (2023-07-05T18:14:38Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
We propose a hybrid approach where Laplace-based Bayesian inference is combined with an ANN architecture for obtaining approximations to the ODE trajectories.
The effectiveness of our proposed methods is demonstrated using an epidemiological system with non-analytical solutions, the Susceptible-Infectious-Removed (SIR) model for infectious diseases.
arXiv Detail & Related papers (2022-10-17T09:02:41Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Derivative-Based Koopman Operators for Real-Time Control of Robotic
Systems [14.211417879279075]
This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error.
We construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound.
When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods.
arXiv Detail & Related papers (2020-10-12T15:15:13Z) - Learning Stable Nonparametric Dynamical Systems with Gaussian Process
Regression [9.126353101382607]
We learn a nonparametric Lyapunov function based on Gaussian process regression from data.
We prove that stabilization of the nominal model based on the nonparametric control Lyapunov function does not modify the behavior of the nominal model at training samples.
arXiv Detail & Related papers (2020-06-14T11:17:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.