Efficient Prior Calibration From Indirect Data
- URL: http://arxiv.org/abs/2405.17955v1
- Date: Tue, 28 May 2024 08:34:41 GMT
- Title: Efficient Prior Calibration From Indirect Data
- Authors: O. Deniz Akyildiz, Mark Girolami, Andrew M. Stuart, Arnaud Vadeboncoeur,
- Abstract summary: This paper is concerned with learning the prior model from data, in particular, learning the prior from multiple realizations of indirect data obtained through the noisy observation process.
An efficient residual-based neural operator approximation of the forward model is proposed and it is shown that this may be learned concurrently with the pushforward map.
- Score: 5.588334720483076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian inversion is central to the quantification of uncertainty within problems arising from numerous applications in science and engineering. To formulate the approach, four ingredients are required: a forward model mapping the unknown parameter to an element of a solution space, often the solution space for a differential equation; an observation operator mapping an element of the solution space to the data space; a noise model describing how noise pollutes the observations; and a prior model describing knowledge about the unknown parameter before the data is acquired. This paper is concerned with learning the prior model from data; in particular, learning the prior from multiple realizations of indirect data obtained through the noisy observation process. The prior is represented, using a generative model, as the pushforward of a Gaussian in a latent space; the pushforward map is learned by minimizing an appropriate loss function. A metric that is well-defined under empirical approximation is used to define the loss function for the pushforward map to make an implementable methodology. Furthermore, an efficient residual-based neural operator approximation of the forward model is proposed and it is shown that this may be learned concurrently with the pushforward map, using a bilevel optimization formulation of the problem; this use of neural operator approximation has the potential to make prior learning from indirect data more computationally efficient, especially when the observation process is expensive, non-smooth or not known. The ideas are illustrated with the Darcy flow inverse problem of finding permeability from piezometric head measurements.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
We show that the gradient of a model is a special case of a more general formulation using semirings.
This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics.
arXiv Detail & Related papers (2023-07-06T15:19:53Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
We develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations.
MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization framework.
We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
arXiv Detail & Related papers (2022-05-27T09:59:46Z) - Generative models and Bayesian inversion using Laplace approximation [0.3670422696827525]
Recently, inverse problems were solved using generative models as highly informative priors.
We show that derived Bayes estimates are consistent, in contrast to the approach employing the low-dimensional manifold of the generative model.
arXiv Detail & Related papers (2022-03-15T10:05:43Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Nonlinear state-space identification using deep encoder networks [0.0]
This paper introduces a method that approximates the simulation loss by splitting the data set into independent sections to the multiple shooting method.
The main contribution is the introduction of an encoder function to estimate the initial state at the start each section.
arXiv Detail & Related papers (2020-12-14T16:49:06Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
This paper introduces a novel and distributed method for detecting inter-map loop closure outliers in simultaneous localization and mapping (SLAM)
The proposed algorithm does not rely on a good initialization and can handle more than two maps at a time.
arXiv Detail & Related papers (2020-02-07T06:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.