CuriousBot: Interactive Mobile Exploration via Actionable 3D Relational Object Graph
- URL: http://arxiv.org/abs/2501.13338v1
- Date: Thu, 23 Jan 2025 02:39:04 GMT
- Title: CuriousBot: Interactive Mobile Exploration via Actionable 3D Relational Object Graph
- Authors: Yixuan Wang, Leonor Fermoselle, Tarik Kelestemur, Jiuguang Wang, Yunzhu Li,
- Abstract summary: Mobile exploration is a longstanding challenge in robotics.
Existing robotic exploration approaches via active interaction are often restricted to tabletop scenes.
We introduce a 3D relational object graph that encodes diverse object relations and enables exploration through active interaction.
- Score: 12.54884302440877
- License:
- Abstract: Mobile exploration is a longstanding challenge in robotics, yet current methods primarily focus on active perception instead of active interaction, limiting the robot's ability to interact with and fully explore its environment. Existing robotic exploration approaches via active interaction are often restricted to tabletop scenes, neglecting the unique challenges posed by mobile exploration, such as large exploration spaces, complex action spaces, and diverse object relations. In this work, we introduce a 3D relational object graph that encodes diverse object relations and enables exploration through active interaction. We develop a system based on this representation and evaluate it across diverse scenes. Our qualitative and quantitative results demonstrate the system's effectiveness and generalization capabilities, outperforming methods that rely solely on vision-language models (VLMs).
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - Grounding 3D Scene Affordance From Egocentric Interactions [52.5827242925951]
Grounding 3D scene affordance aims to locate interactive regions in 3D environments.
We introduce a novel task: grounding 3D scene affordance from egocentric interactions.
arXiv Detail & Related papers (2024-09-29T10:46:19Z) - RoboEXP: Action-Conditioned Scene Graph via Interactive Exploration for Robotic Manipulation [21.387160107315797]
We introduce the novel task of interactive scene exploration, wherein robots autonomously explore environments and produce an action-conditioned scene graph (ACSG)
The ACSG accounts for both low-level information (geometry and semantics) and high-level information (action-conditioned relationships between different entities) in the scene.
We present the Robotic Exploration (RoboEXP) system, which incorporates the Large Multimodal Model (LMM) and an explicit memory design to enhance our system's capabilities.
arXiv Detail & Related papers (2024-02-23T18:27:17Z) - Teaching Unknown Objects by Leveraging Human Gaze and Augmented Reality
in Human-Robot Interaction [3.1473798197405953]
This dissertation aims to teach a robot unknown objects in the context of Human-Robot Interaction (HRI)
The combination of eye tracking and Augmented Reality created a powerful synergy that empowered the human teacher to communicate with the robot.
The robot's object detection capabilities exhibited comparable performance to state-of-the-art object detectors trained on extensive datasets.
arXiv Detail & Related papers (2023-12-12T11:34:43Z) - FOCUS: Object-Centric World Models for Robotics Manipulation [4.6956495676681484]
FOCUS is a model-based agent that learns an object-centric world model.
We show that object-centric world models allow the agent to solve tasks more efficiently.
We also showcase how FOCUS could be adopted in real-world settings.
arXiv Detail & Related papers (2023-07-05T16:49:06Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments.
At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images.
We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration.
arXiv Detail & Related papers (2021-04-12T23:14:41Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - iGibson, a Simulation Environment for Interactive Tasks in Large
Realistic Scenes [54.04456391489063]
iGibson is a novel simulation environment to develop robotic solutions for interactive tasks in large-scale realistic scenes.
Our environment contains fifteen fully interactive home-sized scenes populated with rigid and articulated objects.
iGibson features enable the generalization of navigation agents, and that the human-iGibson interface and integrated motion planners facilitate efficient imitation learning of simple human demonstrated behaviors.
arXiv Detail & Related papers (2020-12-05T02:14:17Z) - Reactive Human-to-Robot Handovers of Arbitrary Objects [57.845894608577495]
We present a vision-based system that enables human-to-robot handovers of unknown objects.
Our approach combines closed-loop motion planning with real-time, temporally-consistent grasp generation.
We demonstrate the generalizability, usability, and robustness of our approach on a novel benchmark set of 26 diverse household objects.
arXiv Detail & Related papers (2020-11-17T21:52:22Z) - Attention-Oriented Action Recognition for Real-Time Human-Robot
Interaction [11.285529781751984]
We propose an attention-oriented multi-level network framework to meet the need for real-time interaction.
Specifically, a Pre-Attention network is employed to roughly focus on the interactor in the scene at low resolution.
The other compact CNN receives the extracted skeleton sequence as input for action recognition.
arXiv Detail & Related papers (2020-07-02T12:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.