論文の概要: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization
- arxiv url: http://arxiv.org/abs/2501.13370v1
- Date: Thu, 23 Jan 2025 04:17:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:57:26.759631
- Title: Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization
- Title(参考訳): 流体駆動型異常ランダム化による正常解剖の解明
- Authors: Peirong Liu, Ana Lawry Aguila, Juan E. Iglesias,
- Abstract要約: UNA(Unraveling Normal Anatomy, Unraveling Normal Anatomy)を導入した。
本研究では,現実的な病理プロファイルを無制限に生成する流体駆動型異常ランダム化手法を提案する。
健常な脳解剖の再構築におけるUNAの有効性を実証し,その異常検出への直接的応用を示す。
- 参考スコア(独自算出の注目度): 3.513196894656874
- License:
- Abstract: Data-driven machine learning has made significant strides in medical image analysis. However, most existing methods are tailored to specific modalities and assume a particular resolution (often isotropic). This limits their generalizability in clinical settings, where variations in scan appearance arise from differences in sequence parameters, resolution, and orientation. Furthermore, most general-purpose models are designed for healthy subjects and suffer from performance degradation when pathology is present. We introduce UNA (Unraveling Normal Anatomy), the first modality-agnostic learning approach for normal brain anatomy reconstruction that can handle both healthy scans and cases with pathology. We propose a fluid-driven anomaly randomization method that generates an unlimited number of realistic pathology profiles on-the-fly. UNA is trained on a combination of synthetic and real data, and can be applied directly to real images with potential pathology without the need for fine-tuning. We demonstrate UNA's effectiveness in reconstructing healthy brain anatomy and showcase its direct application to anomaly detection, using both simulated and real images from 3D healthy and stroke datasets, including CT and MRI scans. By bridging the gap between healthy and diseased images, UNA enables the use of general-purpose models on diseased images, opening up new opportunities for large-scale analysis of uncurated clinical images in the presence of pathology. Code is available at https://github.com/peirong26/UNA.
- Abstract(参考訳): データ駆動機械学習は、医療画像解析において大きな進歩を遂げている。
しかし、既存のほとんどのメソッドは特定のモジュラリティに合わせて調整され、特定の分解能(しばしば等方性)を仮定する。
これは、スキャンの外観のバリエーションが、シーケンスパラメータ、分解能、配向の違いから生じる、臨床環境での一般化可能性を制限する。
さらに、ほとんどの汎用モデルは健常者向けに設計されており、病態が存在すると性能劣化に悩まされる。
UNA(Unraveling Normal Anatomy, Unraveling Normal Anatomy, UNA)は, 正常脳解剖再建のための最初のモダリティ非依存的学習手法である。
本研究では,現実的な病理プロファイルを無制限に生成する流体駆動型異常ランダム化手法を提案する。
UNAは、合成データと実データの組み合わせで訓練されており、微調整を必要とせずに、潜在的な病理を持つ実際の画像に直接適用することができる。
健常な脳解剖の再構築におけるUNAの有効性を実証し,CTやMRIなどの3次元健常および脳卒中画像からのシミュレーション画像と実画像の両方を用いて,異常検出への直接的応用を示す。
健康な画像と病気の画像のギャップを埋めることにより、UNAは疾患画像に対する汎用モデルの使用を可能にし、病態の存在下で未治療の臨床画像を大規模に解析する新たな機会を開く。
コードはhttps://github.com/peirong26/UNA.comで入手できる。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Inpainting Pathology in Lumbar Spine MRI with Latent Diffusion [4.410798232767917]
病理組織学的特徴をMRIで健全な解剖学的特徴に塗布する効率的な方法を提案する。
腰椎椎間板ヘルニアと中心管狭窄に対し,T2 MRIにて椎間板ヘルニアを挿入する能力について検討した。
論文 参考訳(メタデータ) (2024-06-04T16:47:47Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
拡散確率モデル(DDPM)を利用したVerseDiff-UNetというエンドツーエンドフレームワークを提案する。
我々のアプローチは拡散モデルを標準のU字型アーキテクチャに統合する。
本手法はX線画像から得られた脊椎画像の1つのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-09-12T03:05:00Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - DrasCLR: A Self-supervised Framework of Learning Disease-related and
Anatomy-specific Representation for 3D Medical Images [23.354686734545176]
3次元医用イメージングのための新しいSSLフレームワークDrasCLRを提案する。
本研究では, 局所解剖学的領域内の微妙な疾患パターンを捉えることを目的としており, 大規模領域にまたがる深刻な疾患パターンを表現することを目的としている。
論文 参考訳(メタデータ) (2023-02-21T01:32:27Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
我々は、DCNNを最先端の顔認識手法であるiResNetとArcFaceに置き換える影響を分析する。
提案するアンサンブルモデルにより,目視と目視の両障害に対する最先端のパフォーマンスが達成される。
論文 参考訳(メタデータ) (2022-11-12T23:28:54Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Brain Tumor Anomaly Detection via Latent Regularized Adversarial Network [34.81845999071626]
本稿では,脳腫瘍の異常検出アルゴリズムを提案する。
健常な(正常な)脳画像のみを訓練する半教師付き異常検出モデルが提案されている。
論文 参考訳(メタデータ) (2020-07-09T12:12:16Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
画像異常検出の新しい強力な手法を提案する。
これは、再設計されたトレーニングパイプラインを備えた古典的なオートエンコーダアプローチに依存している。
複雑な医用画像解析タスクにおける最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-23T18:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。