Fast and Provable Tensor-Train Format Tensor Completion via Precondtioned Riemannian Gradient Descent
- URL: http://arxiv.org/abs/2501.13385v1
- Date: Thu, 23 Jan 2025 05:03:50 GMT
- Title: Fast and Provable Tensor-Train Format Tensor Completion via Precondtioned Riemannian Gradient Descent
- Authors: Fengmiao Bian, Jian-Feng Cai, Xiaoqun Zhang, Yuanwei Zhang,
- Abstract summary: This paper investigates the low-rank tensor completion problem based on the tensor train (TT) format.
We propose a preconditioned gradient descent algorithm (PRGD) to solve low TT-rank tensor completion and establish its linear convergence.
In practical applications such as hyperspectral image completion and quantum state tomography, the PRGD algorithm significantly reduced the number of iterations, thereby substantially reducing the computational time.
- Score: 4.376623639964006
- License:
- Abstract: Low-rank tensor completion aims to recover a tensor from partially observed entries, and it is widely applicable in fields such as quantum computing and image processing. Due to the significant advantages of the tensor train (TT) format in handling structured high-order tensors, this paper investigates the low-rank tensor completion problem based on the TT-format. We proposed a preconditioned Riemannian gradient descent algorithm (PRGD) to solve low TT-rank tensor completion and establish its linear convergence. Experimental results on both simulated and real datasets demonstrate the effectiveness of the PRGD algorithm. On the simulated dataset, the PRGD algorithm reduced the computation time by two orders of magnitude compared to existing classical algorithms. In practical applications such as hyperspectral image completion and quantum state tomography, the PRGD algorithm significantly reduced the number of iterations, thereby substantially reducing the computational time.
Related papers
- Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition [27.29463801531576]
We study the theoretical and algorithmic aspects of the TT-based ToT regression model.
We propose two algorithms to efficiently find solutions to constrained error bounds.
We establish the linear convergence rate of both IHT and RGD.
arXiv Detail & Related papers (2024-06-10T03:51:38Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Latent Matrices for Tensor Network Decomposition and to Tensor
Completion [8.301418317685906]
We propose a novel higher-order tensor decomposition model that decomposes the tensor into smaller ones and speeds up the computation of the algorithm.
Three optimization algorithms, LMTN-PAM, LMTN-SVD and LMTN-AR, have been developed and applied to the tensor-completion task.
Experimental results show that our LMTN-SVD algorithm is 3-6 times faster than the FCTN-PAM algorithm and only a 1.8 points accuracy drop.
arXiv Detail & Related papers (2022-10-07T08:19:50Z) - Softmax-free Linear Transformers [90.83157268265654]
Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks.
Existing methods are either theoretically flawed or empirically ineffective for visual recognition.
We propose a family of Softmax-Free Transformers (SOFT)
arXiv Detail & Related papers (2022-07-05T03:08:27Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Random-reshuffled SARAH does not need a full gradient computations [61.85897464405715]
The StochAstic Recursive grAdientritHm (SARAH) algorithm is a variance reduced variant of the Gradient Descent (SGD) algorithm.
In this paper, we remove the necessity of a full gradient.
The aggregated gradients serve as an estimate of a full gradient in the SARAH algorithm.
arXiv Detail & Related papers (2021-11-26T06:00:44Z) - Provable Tensor-Train Format Tensor Completion by Riemannian
Optimization [22.166436026482984]
We provide the first theoretical guarantees of the convergence of RGrad algorithm for TT-format tensor completion.
We also propose a novel approach, referred to as the sequential second-order moment method.
arXiv Detail & Related papers (2021-08-27T08:13:58Z) - New Riemannian preconditioned algorithms for tensor completion via
polyadic decomposition [10.620193291237262]
These algorithms exploit a non-Euclidean metric on the product space of the factor matrices of the low-rank tensor in the polyadic decomposition form.
We prove that the proposed gradient descent algorithm globally converges to a stationary point of the tensor completion problem.
Numerical results on synthetic and real-world data suggest that the proposed algorithms are more efficient in memory and time compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-01-26T22:11:06Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Grassmannian Optimization for Online Tensor Completion and Tracking with
the t-SVD [10.137631021498109]
We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors.
We present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data.
Our results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications.
arXiv Detail & Related papers (2020-01-30T15:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.