Time Series Embedding Methods for Classification Tasks: A Review
- URL: http://arxiv.org/abs/2501.13392v1
- Date: Thu, 23 Jan 2025 05:24:45 GMT
- Title: Time Series Embedding Methods for Classification Tasks: A Review
- Authors: Yasamin Ghahremani, Vangelis Metsis,
- Abstract summary: We present a comprehensive review and evaluation of time series embedding methods for effective representations in machine learning and deep learning models.
We introduce a taxonomy of embedding techniques, categorizing them based on their theoretical foundations and application contexts.
Our experimental results demonstrate that the performance of embedding methods varies significantly depending on the dataset and classification algorithm used.
- Score: 2.8084422332394428
- License:
- Abstract: Time series analysis has become crucial in various fields, from engineering and finance to healthcare and social sciences. In this paper, we present a comprehensive review and evaluation of time series embedding methods for effective representations in machine learning and deep learning models. We introduce a taxonomy of embedding techniques, categorizing them based on their theoretical foundations and application contexts. Unlike previous surveys, our work provides a quantitative evaluation of representative methods from each category by assessing their performance on downstream classification tasks across diverse real-world datasets. Our experimental results demonstrate that the performance of embedding methods varies significantly depending on the dataset and classification algorithm used, highlighting the importance of careful model selection and extensive experimentation for specific applications, including engineering systems. To facilitate further research and practical applications, we provide an open-source code repository implementing these embedding methods. This study contributes to the field by offering a systematic comparison of time series embedding techniques, guiding practitioners in selecting appropriate methods for their specific applications, and providing a foundation for future advancements in time series analysis.
Related papers
- Supervised Time Series Classification for Anomaly Detection in Subsea
Engineering [0.0]
We investigate the use of supervised machine learning classification algorithms on simulated data based on a physical system with two states: Intact and Broken.
We provide a comprehensive discussion of the preprocessing of temporal data, using measures of statistical dispersion and dimension reduction techniques.
We conclude with a comparison of the various methods based on different performance metrics, showing the advantage of using machine learning techniques as a tool in decision making.
arXiv Detail & Related papers (2024-03-12T18:25:10Z) - Experimental Analysis of Large-scale Learnable Vector Storage
Compression [42.52474894105165]
Learnable embedding vector is one of the most important applications in machine learning.
The high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table.
Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads.
arXiv Detail & Related papers (2023-11-27T07:11:47Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - Label-efficient Time Series Representation Learning: A Review [19.218833228063392]
Label-efficient time series representation learning is crucial for deploying deep learning models in real-world applications.
To address the scarcity of labeled time series data, various strategies, e.g., transfer learning, self-supervised learning, and semi-supervised learning, have been developed.
We introduce a novel taxonomy for the first time, categorizing existing approaches as in-domain or cross-domain, based on their reliance on external data sources.
arXiv Detail & Related papers (2023-02-13T15:12:15Z) - A Comparative Study on Unsupervised Anomaly Detection for Time Series:
Experiments and Analysis [28.79393419730138]
Time series anomaly detection is often essential to enable reliability and safety.
Many recent studies target anomaly detection for time series data.
We introduce for data, methods, and evaluation strategies.
We systematically evaluate and compare state-of-the-art traditional as well as deep learning techniques.
arXiv Detail & Related papers (2022-09-10T10:44:25Z) - Early Time-Series Classification Algorithms: An Empirical Comparison [59.82930053437851]
Early Time-Series Classification (ETSC) is the task of predicting the class of incoming time-series by observing as few measurements as possible.
We evaluate six existing ETSC algorithms on publicly available data, as well as on two newly introduced datasets.
arXiv Detail & Related papers (2022-03-03T10:43:56Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
Event extraction technology based on deep learning has become a research hotspot.
This paper fills the gap by reviewing the state-of-the-art approaches, focusing on deep learning-based models.
arXiv Detail & Related papers (2021-07-05T16:32:45Z) - Curriculum Learning: A Survey [65.31516318260759]
Curriculum learning strategies have been successfully employed in all areas of machine learning.
We construct a taxonomy of curriculum learning approaches by hand, considering various classification criteria.
We build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm.
arXiv Detail & Related papers (2021-01-25T20:08:32Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
The last decade has seen a surge of research in this area due to the unprecedented success of deep learning.
This paper fills the gap by reviewing the state-of-the-art approaches from 1961 to 2021.
We create a taxonomy for text classification according to the text involved and the models used for feature extraction and classification.
arXiv Detail & Related papers (2020-08-02T00:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.