Universal Time-Series Representation Learning: A Survey
- URL: http://arxiv.org/abs/2401.03717v3
- Date: Tue, 27 Aug 2024 19:45:07 GMT
- Title: Universal Time-Series Representation Learning: A Survey
- Authors: Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun Kim, Byunghyun Kim, Jae-Gil Lee,
- Abstract summary: Time-series data exists in every corner of real-world systems and services.
Deep learning has demonstrated remarkable performance in extracting hidden patterns and features from time-series data.
- Score: 14.340399848964662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series data exists in every corner of real-world systems and services, ranging from satellites in the sky to wearable devices on human bodies. Learning representations by extracting and inferring valuable information from these time series is crucial for understanding the complex dynamics of particular phenomena and enabling informed decisions. With the learned representations, we can perform numerous downstream analyses more effectively. Among several approaches, deep learning has demonstrated remarkable performance in extracting hidden patterns and features from time-series data without manual feature engineering. This survey first presents a novel taxonomy based on three fundamental elements in designing state-of-the-art universal representation learning methods for time series. According to the proposed taxonomy, we comprehensively review existing studies and discuss their intuitions and insights into how these methods enhance the quality of learned representations. Finally, as a guideline for future studies, we summarize commonly used experimental setups and datasets and discuss several promising research directions. An up-to-date corresponding resource is available at https://github.com/itouchz/awesome-deep-time-series-representations.
Related papers
- TSI: A Multi-View Representation Learning Approach for Time Series Forecasting [29.05140751690699]
This study introduces a novel multi-view approach for time series forecasting.
It integrates trend and seasonal representations with an Independent Component Analysis (ICA)-based representation.
This approach offers a holistic understanding of time series data, going beyond traditional models that often miss nuanced, nonlinear relationships.
arXiv Detail & Related papers (2024-09-30T02:11:57Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Utilizing Expert Features for Contrastive Learning of Time-Series
Representations [4.960805676180953]
We present an approach that incorporates expert knowledge for time-series representation learning.
Our method employs expert features to replace the commonly used data transformations in previous contrastive learning approaches.
We demonstrate on three real-world time-series datasets that ExpCLR surpasses several state-of-the-art methods for both unsupervised and semi-supervised representation learning.
arXiv Detail & Related papers (2022-06-23T07:56:27Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
This review provides a comprehensive overview of existing mapping methods for transforming time series into networks.
We describe the main conceptual approaches, provide authoritative references and give insight into their advantages and limitations in a unified notation and language.
Although still very recent, this research area has much potential and with this survey we intend to pave the way for future research on the topic.
arXiv Detail & Related papers (2021-10-11T13:33:18Z) - Deep learning for time series classification [2.0305676256390934]
Time series analysis allows us to visualize and understand the evolution of a process over time.
Time series classification consists of constructing algorithms dedicated to automatically label time series data.
Deep learning has emerged as one of the most effective methods for tackling the supervised classification task.
arXiv Detail & Related papers (2020-10-01T17:38:40Z) - Time Series Forecasting With Deep Learning: A Survey [5.351996099005896]
We survey common encoder and decoder designs used in both one-step-ahead and multi-horizon time series forecasting.
We highlight recent developments in hybrid deep learning models, which combine well-studied statistical models with neural network components.
arXiv Detail & Related papers (2020-04-28T10:32:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.