Deep Modularity Networks with Diversity--Preserving Regularization
- URL: http://arxiv.org/abs/2501.13451v1
- Date: Thu, 23 Jan 2025 08:05:59 GMT
- Title: Deep Modularity Networks with Diversity--Preserving Regularization
- Authors: Yasmin Salehi, Dennis Giannacopoulos,
- Abstract summary: We propose Deep Modularity Networks with Diversity-Preserving Regularization (DMoN-DPR), which introduces three novel regularization terms: distance-based for inter-cluster separation, variance-based for intra-cluster diversity, and entropy-based for balanced assignments.
Our method enhances clustering performance on benchmark datasets, achieving significant improvements in Normalized Mutual Information (NMI), and F1 scores.
These results demonstrate the effectiveness of incorporating diversity-preserving regularizations in creating meaningful and interpretable clusters, especially in feature-rich datasets.
- Score: 4.659251704980846
- License:
- Abstract: Graph clustering plays a crucial role in graph representation learning but often faces challenges in achieving feature-space diversity. While Deep Modularity Networks (DMoN) leverage modularity maximization and collapse regularization to ensure structural separation, they do not explicitly encourage diversity in the feature space among clusters. We address this limitation by proposing Deep Modularity Networks with Diversity-Preserving Regularization (DMoN-DPR), which introduces three novel regularization terms: distance-based for inter-cluster separation, variance-based for intra-cluster diversity, and entropy-based for balanced assignments. Our method enhances clustering performance on benchmark datasets, namely Cora, CiteSeer, PubMed, Coauthor CS, and Coauthor Physics, achieving significant improvements in Normalized Mutual Information (NMI), and F1 scores. These results demonstrate the effectiveness of incorporating diversity-preserving regularizations in creating meaningful and interpretable clusters, especially in feature-rich datasets.
Related papers
- Revisiting Self-Supervised Heterogeneous Graph Learning from Spectral Clustering Perspective [52.662463893268225]
Self-supervised heterogeneous graph learning (SHGL) has shown promising potential in diverse scenarios.
Existing SHGL methods encounter two significant limitations.
We introduce a novel framework enhanced by rank and dual consistency constraints.
arXiv Detail & Related papers (2024-12-01T09:33:20Z) - Subequivariant Reinforcement Learning in 3D Multi-Entity Physical Environments [31.437047774153037]
This paper proposes Subequivariant Hierarchical Neural Networks (SHNN) to facilitate multi-entity policy learning.
SHNN first dynamically decouples the global space into local entity-level graphs via task assignment.
It then leverages subequivariant message passing over the local entity-level graphs to devise local reference frames.
arXiv Detail & Related papers (2024-07-17T11:37:34Z) - ForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph Neural Networks [9.006068771300377]
We present ForecastGrapher, a framework for capturing the intricate temporal dynamics and inter-series correlations.
Our approach is underpinned by three pivotal steps: generating custom node embeddings to reflect the temporal variations within each series; constructing an adaptive adjacency matrix to encode the inter-series correlations; and thirdly, augmenting the GNNs' expressive power by diversifying the node feature distribution.
arXiv Detail & Related papers (2024-05-28T10:40:20Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
We rectify 3D convolution by modifying its topology to enhance the rank upper-bound.
We also propose a novel diversity-aware regularization (DA-Reg) term that acts on the feature maps to maximize independence among elements.
To demonstrate the superiority of the proposed Re$3$-ConvSet and DA-Reg, we apply them to various HS image processing and analysis tasks.
arXiv Detail & Related papers (2023-01-15T16:19:18Z) - Tensor-based Multi-view Spectral Clustering via Shared Latent Space [14.470859959783995]
Multi-view Spectral Clustering (MvSC) attracts increasing attention due to diverse data sources.
New method for MvSC is proposed via a shared latent space from the Restricted Kernel Machine framework.
arXiv Detail & Related papers (2022-07-23T17:30:54Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.